University of Tasmania
Browse

An evoked potential-guided deep learning brain representation for visual classification

Version 2 2024-09-18, 23:42
Version 1 2023-05-23, 14:48
conference contribution
posted on 2024-09-18, 23:42 authored by X Zheng, Z Cao, Quan BaiQuan Bai

The new perspective in visual classification aims to decode the feature representation of visual objects from human brain activities. Recording electroencephalogram (EEG) from the brain cortex has been seen as a prevalent approach to understand the cognition process of an image classification task. In this study, we proposed a deep learning framework guided by the visual evoked potentials, called the Event-Related Potential (ERP)-Long short-term memory (LSTM) framework, extracted by EEG signals for visual classification. In specific, we first extracted the ERP sequences from multiple EEG channels to response image stimuli-related information. Then, we trained an LSTM network to learn the feature representation space of visual objects for classification. In the experiment, 10 subjects were recorded by over 50,000 EEG trials from an image dataset with 6 categories, including a total of 72 exemplars. Our results showed that our proposed ERP-LSTM framework could achieve classification accuracies of cross-subject of 66.81% and 27.08% for categories (6 classes) and exemplars (72 classes), respectively. Our results outperformed that of using the existing visual classification frameworks, by improving classification accuracies in the range of 12.62%-53.99%. Our findings suggested that decoding visual evoked potentials from EEG signals is an effective strategy to learn discriminative brain representations for visual classification.

History

Publication title

Neural Information Processing: Proceedings of the 27th International Conference on Neural Information Processing. In: Communications in Computer and Information Science, vol 1333

Volume

Part V

Editors

H Yang, K Pasupa, ACS Leung, JT Kwok, JH Chan, & I King

Pagination

54-61

ISBN

978-3-030-63822-1

Department/School

Information and Communication Technology

Publisher

Springer

Publication status

  • Published

Place of publication

Cham, Switzerland

Event title

27th International Conference on Neural Information Processing

Event Venue

Virtual Conference, Online (Bangkok, Thailand)

Date of Event (Start Date)

2020-11-18

Date of Event (End Date)

2020-11-22

Rights statement

Copyright unknown

Socio-economic Objectives

280111 Expanding knowledge in the environmental sciences