The effect of interactions between individual fronds in a bed of the large intertidal seaweed <i>Durvillaea antarctica</i>, when forced by breaking waves, is studied using a computational model. The model simulates the response of a seaweed bed using a sequence of connected oscillators which are excited by a propagating forcing function representing a breaking ocean wave. Two new facets of the interplay between seaweeds and hydrodynamics are considered: (i) wave forcing due to breaking waves is often not sinusoidal in the rocky intertidal zone and (ii) a frond interaction term is included. The addition of frond interaction reduces the maximum loading on individuals within the bed by around 30% using estimated biomechanical parameters. The rate of change of the loading on the holdfast (equivalent to the ‘‘jerk’’) is affected in a similar or greater fashion.