This report looks at two ways to estimate the bulk mineralogy of the rocks for assay intervals. The aim is to find an efficient indicator of the most common minerals in the rock. Phase (modal) analysis has traditionally been done using visual methods such as point counting and image analysis. A modern version of this process is the X-ray point counting routine using the SEM-EDS based software. These methods are too slow and expensive for routine analysis of bulk sample mineralogy at the normal assay spacing. Two sources of data were considered that provide information that can be used to determine the mineral abundance in assay samples. The most widely applied method is (semi-) quantitative X-ray diffraction (QXRD). The QXRD method is most applicable to major minerals and has limited application to minerals at low abundance. The nominal detection limit is 0.5%. Values below 5% have large errors. A second, less common, method is calculation of mineralogy from chemical assay data. Conversion of chemical analyses to mineralogical analyses depends on the unique chemical composition of each mineral. Elements only found in one mineral are easily accounted for, but many compositions are ambiguous. Deciding on the actual mineralogy is not simple. Recalculation of mineral mode from chemical analyses is more accurate than QXRD when the correct minerals, and mineral compositions, are known. Where only a few QXRD analyses are available they can be used to setup a standard for calculation of mineralogy from assay data. We found linear programming works well in this environment. The best results are obtained when both H2O and CO2 are directly measured. LOI should be included if these are not available. Where both QXRD and chemical analysis are available for all samples, the best results are obtained using the least squared method to merge the datasets assuming QXRD errors have much higher analytical errors than chemical assays. The combined method provides more robust results because the high abundance minerals are controlled by the QXRD measurements while the chemical assays improve the precision for low abundance minerals.
Funding
Australian Research Council
AMIRA International Ltd
ARC C of E Industry Partner $ to be allocated
Anglo American Exploration Philippines Inc
AngloGold Ashanti Australia Limited
Australian National University
BHP Billiton Ltd
Barrick (Australia Pacific) PTY Limited
CSIRO Earth Science & Resource Engineering
Mineral Resources Tasmania
Minerals Council of Australia
Newcrest Mining Limited
Newmont Australia Ltd
Oz Minerals Australia Limited
Rio Tinto Exploration
St Barbara Limited
Teck Cominco Limited
University of Melbourne
University of Queensland
Zinifex Australia Ltd
History
Publication title
Proceedings of the 1st International Geometallurgy Conference (GeoMet 2011)
Editors
S Dominy
Pagination
153-156
ISBN
9781921522499
Department/School
School of Natural Sciences
Publisher
Australasian Institute of Mining and Metallurgy
Place of publication
Burwood, VIC, Australia
Event title
1st International Geometallurgy Conference (GeoMet 2011)