This paper describes how conventional image processing techniques can be applied to the grading of Southern Rock Lobsters (SRL) to produce a high quality data layer which could be an input into product traceability. The research is part of a broader investigation into designing a low-cost biometric identification solution for use along the entire lobster supply chain. In approaching the image processing for lobster grading a key consideration is to develop a system capable of using low cost consumer grade cameras readily available in mobile phones. The results confirm that by combining a number of common techniques in computer vision it is possible to capture and process a set of valuable attributes from sampled lobster image including color, length, weight, legs and sex. By combining this image profile with other pre-existing data on catch location and landing port each lobster can be verifiably tracked along the supply chain journey to markets in China. The image processing research results achieved in the laboratory show high accuracy in measuring lobster carapace length that is vital for weight conversion calculations. The results also demonstrate the capability to obtain reliable values for average color, tail shape and number of legs on a lobster used in grading classifications. The findings are a major first step in the development of individual lobster biometric identification and will directly contribute to automating lobster grading in this valuable Australian fishery.
History
Publication title
Proceedings of DICTA 2018
Pagination
1-8
Department/School
School of Information and Communication Technology
Publisher
Institute of Electrical and Electronics Engineers, Inc.
Place of publication
Australia
Event title
2018 International Conference on Digital Image Computing: Techniques and Applications (DICTA 2018)