A novel computational method is developed in this study through the coupling of the discrete element method (DEM) and the scaled boundary finite element method (SBFEM).The objective of the developed technique is to model the particle breakage phenomenon in granular materials. This method models individual grains as single star-convex arbitrary sided polygons. The DEM is used to resolve the dynamics of each grain whereas the SBFEM is used to determine its corresponding stress state after a DEM analysis. The flexibility of both the SBFEM and DEM enable the grains to be formulated on arbitrary sided polygons so that the morphology of each grain to be replicated using only a single polygon. Grain breakage condition is determined if the stress state in a polygon satisfies a mechanically driven criterion e.g., the Hooke-Brown criterion is used. Once the breakage condition is detected, the resulting grain is split into two separate polygons. The resulting new polygons are directly model led by the DEM and SBFEM without any change to the formulation. The feasibility of the developed method is demonstrated by a numerical example.
History
Publication title
Proceedings of the 7th International Conference on Discrete Element Methods
Editors
X Li, Y Feng & G Mustoe
Pagination
281-288
ISBN
9789811019258
Department/School
School of Engineering
Publisher
Springer
Place of publication
Singapore
Event title
7th International Conference on Discrete Element Methods (DEM7 2016)