University of Tasmania
Browse

File(s) under permanent embargo

Modelling the impacts of fire in a typical FLNG processing facility

conference contribution
posted on 2023-05-23, 11:59 authored by Til BaalisampangTil Baalisampang, Rouzbeh AbbassiRouzbeh Abbassi, Vikrambhai Garaniya, Faisal KhanFaisal Khan, Dadashzadeh, M
In the past oil and gas industry had experienced numerous major accidents with catastrophic consequences. Among oil and gas processing technologies, floating liquefied natural gas (FLNG) is an emerging technology which has no operational experiences or lesson learnt to date. In any processing facilities, fire is considered as one of the major hazards. A risk due to fire is considered as the most critical among all other potential risk in FLNG processing facilities due to inherent flammable hazards of hydrocarbons, hydrodynamic interactions, high pressures and their synergistic effects. There is a need of an adequate fire risk assessment and consequence analysis of FLNG processing facilities. Therefore, this study proposes a novel risk-based methodology for modelling the impacts of fire event in a typical FLNG processing facility. The impacts of fire event on adjacent assets and personnel are assessed considering a credible leakage of LNG with an immediate ignition. The scenario is computationally simulated using Fire Dynamic Simulator (FDS). The results of the simulation are used for impact assessment based on predefined criteria and safety measured design is considered to mitigate or avoid the impacts. As part of the safety measured design, a generic water deluge system is installed adjacent to fire location. After the activation of the water deluge system, it is found that the impacts and corresponding risk are significantly reduced. It is evident that the proposed methodology can assess fire impact and manage the associated risks. Additionally, the methodology can be used further for assessing primary propagation of domino effects in a complex processing facility.

History

Publication title

Proceedings of the International Conference on Safety and Fire Engineering (SAFE'17)

Editors

VR Renjith

Pagination

C1.1-C1.10

ISBN

978-93-80095-96-7

Department/School

Australian Maritime College

Publisher

Cochin University of Science and Technology

Place of publication

India

Event title

SAFE'17: International Conference on Safety and Fire Engineering

Event Venue

Kochi, Kerala, India

Date of Event (Start Date)

2017-04-27

Date of Event (End Date)

2017-04-28

Rights statement

Copyright unknown

Repository Status

  • Restricted

Socio-economic Objectives

Oil and gas exploration

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC