Multi-layer perceptron training algorithms for pattern recognition of myoelectric signals
A challenge in using myoelectric signals in control of motorised prostheses is achieving effective signal pattern recognition and robust classification of intended motions. In this paper, the performance of Matlab’s Multi-layer Perceptron (MLP) backpropogation training algorithms in motion classification were assessed. The test and evaluation platform used was “BioPatRec”, a Matlab-based open-source prosthetic control development environment, together with algorithms sourced from Matlab’s neural network toolbox. The algorithms were used to interpret multielectrode myoelectric signals for motion classification, with the aim of finding the best performing algorithm and network model. The results showed that Matlab’s trainlm and trainrp algorithms could achieve a higher accuracy than other tested MLP training algorithms (94.13 ± 0.037% and 91.09 ± 0.047%, respectively). Discussion of these results investigates significant features to obtain the highest performance.
History
Publication title
Proceedings of the 6th Biomedical Engineering International Conference (BMEiCON2013)Volume
118Editors
C PintaviroojPagination
6687665.1-6687665.5ISBN
978-1-4799-1466-1Department/School
EngineeringPublisher
IEEEPublication status
- Published