22-CSE1014- Paper.pdf (1.23 MB)
Download fileNumerical modelling of a fast pyrolysis process in a bubbling fluidized bed reactor
conference contribution
posted on 2023-05-23, 12:08 authored by Jalalifar, S, Matt Ghiji, Rouzbeh AbbassiRouzbeh Abbassi, Vikrambhai GaraniyaVikrambhai Garaniya, Hawboldt, KIn this study, the Eulerian-Granular approach is applied to simulate a fast pyrolysis bubbling fluidized bed reactor. Fast pyrolysis converts biomass to bio-products through thermochemical conversion in absence of oxygen. The aim of this study is to employ a numerical framework for simulation of the fast pyrolysis process and extend this to more complex reactor geometries. The framework first needs to be validated and this was accomplished by modelling a lab-scale pyrolysis fluidized bed reactor in 2-D and comparing with published data. A multi-phase CFD model has been employed to obtain clearer insights into the physical phenomena associated with flow dynamics and heat transfer, and by extension the impact on reaction rates. Biomass thermally decomposes to solid, condensable and non-condensable and therefore a multi-fluid model is used. A simplified reaction model is sued where the many components are grouped into a solid reacting phase, condensable/non-condensable phase, and non-reacting solid phase (the heat carrier). The biomass decomposition is simplified to four reaction mechanisms based on the thermal decomposition of cellulose. A time-splitting method is used for coupling of multi-fluid model and reaction rates. A good agreement is witnessed in the products yield between the CFD simulation and the experiment.
History
Publication title
Proceedings of the 2017 International Conference on Sustainable Energy Engineering (IOP Conference Series: Earth and Environmental Science)Volume
73Editors
SH WangPagination
139-145ISSN
1755-1315Department/School
Australian Maritime CollegePublisher
IOP Publishing, Inc.Place of publication
United KingdomEvent title
2017 International Conference on Sustainable Energy EngineeringEvent Venue
Perth, AustraliaDate of Event (Start Date)
2017-06-12Date of Event (End Date)
2017-06-14Rights statement
Copyright 2017 The Authors. Published under Creative Commons Attribution 3.0 Unported (CC BY 3.0) licence in, Proceedings of the 2017 International Conference on Sustainable Energy Engineering (IOP Conference Series: Earth and Environmental Science) by IOP Publishing Ltd. https://creativecommons.org/licenses/by/3.0/ Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Repository Status
- Open