Digital optical microscopy (DOM) and automated SEM-based (ASEM) mineralogy systems (MLA, QEMSCAN) have experienced signifi cant developments within the last decade. However these developments have been independent from each other and the two mineralogical techniques have so far not yet been integrated to combine the strengths and technical benefi ts of both analytical platforms. This detailed comprehensive mineralogical information is critical support for geometallurgy. Major hardware and software advances in DOM in the last few years have provided important new capabilities with potential applications to automated mineralogy. These technological advances have been largely driven by sectors outside mining (eg medical pathology) and have not yet been widely adopted within the minerals industry. The advent of DOM offers signifi cantly more automated mineralogy capabilities than traditional expert-mineralogist driven optical microscopy. This is based on advances in automated image acquisition, high resolution cameras for digital imaging, imaging of large areas through mosaic options, integration of multiple layers and application of advanced image analysis techniques. Ongoing research involves combining the outputs of DOM and ASEM-based microscopy to create new capabilities for integrated microscopy based on development of advanced cross-platform image fusion and data integration between DOM and ASEM (exploiting the benefi ts of both analytical platforms). This requires non-linear image registration and transfer of mineralogical identifi cation from ASEM to DOM systems using sophisticated image manipulation and data analysis software. Examples will be given of image fusion and data registration for a range of different ore types. Image fusion techniques are demonstrated using a porphyry copper deposit sample where sulfi des and precious metals are classifi ed using the MLA and gangue mineralogy obtained from DOM images. Data integration enables creation of a library containing optical property variability information for minerals identifi ed by the MLA; thus reducing the reliance on skilled mineral identifi cation by supplementing human interpretation.
Funding
Australian Research Council
AMIRA International Ltd
ARC C of E Industry Partner $ to be allocated
Anglo American Exploration Philippines Inc
AngloGold Ashanti Australia Limited
Australian National University
BHP Billiton Ltd
Barrick (Australia Pacific) PTY Limited
CSIRO Earth Science & Resource Engineering
Mineral Resources Tasmania
Minerals Council of Australia
Newcrest Mining Limited
Newmont Australia Ltd
Oz Minerals Australia Limited
Rio Tinto Exploration
St Barbara Limited
Teck Cominco Limited
University of Melbourne
University of Queensland
Zinifex Australia Ltd
History
Publication title
Proceedings of the 1st International Geometallurgy Conference (GeoMet 2011)
Editors
S Dominy
Pagination
157-162
ISBN
9781921522499
Department/School
School of Natural Sciences
Publisher
Australasian Institute of Mining and Metallurgy
Place of publication
Burwood, VIC, Australia
Event title
1st International Geometallurgy Conference (GeoMet 2011)
Event Venue
Brisbane
Date of Event (Start Date)
2011-09-05
Date of Event (End Date)
2011-09-07
Rights statement
Copyright 2011 The Australasian Institute of Mining and Metallurgy