University of Tasmania
Browse

File(s) under permanent embargo

Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica

Version 2 2024-10-28, 04:16
Version 1 2023-05-24, 21:38
conference contribution
posted on 2024-10-28, 04:16 authored by Roland WarnerRoland Warner, H Fricker, S Adusumilli, P Arndt, J Kingslake, J Spergel

Surface meltwater accumulating on Antarctica’s floating ice shelves can drive fractures through to the ocean and potentially cause their collapse, leading to enhanced ice discharge from the continent. Surface melting in Antarctica is predicted to increase significantly during coming decades, but the implications for ice shelf stability are unknown. We are still learning how meltwater forms, flows and alters the surface, and that rapid water-driven changes are not limited to summer. The southern Amery Ice Shelf in East Antarctica already has an extensive surface meltwater system and provides us with an opportunity to study melt processes in detail. We present high-resolution satellite data (imagery, ICESat-2 altimetry and elevation models from WorldView stereo-photogrammetry) revealing an abrupt change extending across ~60 km2 of the ice shelf surface in June 2019 (midwinter). We interpret this as drainage of an englacial lake through to the ocean below in less than three days. This left an uneven depression in the ice shelf surface, 11 km2 in area and as much as 80 m deep, with a bed of fractured ice: an “ice doline”. The englacial lake had lain beneath the perennially ice-covered portion of a 20 km2 meltwater lake. The reduced mass loading on the floating ice shelf after the drainage event resulted in flexure, with uplift of up to 36 m around the former lake. Applying an elastic flexural model to the uplift profiles suggests the loss of 0.75 km3 of water to the ocean. In summer 2020, we observed meltwater accumulating in a new lake basin created by the flexure. ICESat-2 observations profiled a new narrow meltwater channel (20 m wide and 3 m deep), rapidly incised inside the doline as meltwater spilled over from the new lake and started refilling the depression. This study demonstrates how high-resolution geodetic measurements from ICESat-2 and WorldView can explore critical fine-scale ice shelf processes. The insights gained will greatly improve our ability to model these processes, ultimately improving the accuracy of our projections.

History

Publication title

EGU General Assembly 2021 Book of Abstracts

Pagination

EGU21-EGU14157

Department/School

Australian Antarctic Program Partnership

Publisher

Copernicus GmbH

Publication status

  • Published

Place of publication

Germany

Event title

EGU General Assembly 2021

Event Venue

online

Socio-economic Objectives

180401 Antarctic and Southern Ocean ice dynamics

UN Sustainable Development Goals

13 Climate Action, 14 Life Below Water