RM_Photo_Ready.pdf (206.28 kB)
Rated MCRDR: Finding non-Linear Relationships Between Classifications in MCRDR.
conference contribution
posted on 2023-05-26, 10:19 authored by Dazeley, R, Kang, BHMultiple Classification Ripple Down Rules (MCRDR) is a simple and effective knowledge acquisition technique that produces representations, or knowledge maps, of a human experts' knowledge of a particular domain. This knowledge map can then be used to automate and help the user perform classification and categorisation of cases while still being able to add more refined knowledge incrementally. While MCRDR has been applied in many domains, work on understanding the meta-knowledge acquired or using the knowledge to derive new information is still in its infancy. This paper will introduce a technique called Rated MCRDR (RM), which looks at deriving and learning information about both linear and non-linear relationships between the multiple classifications within MCRDR. This method uses the knowledge received in the MCRDR knowledge map to derive additional information that allows improvements in functionality within existing domains, to which MCRDR is currently applied, as well as opening up the possibility of new problem domains. Preliminary testing shows that there exists a strong potential for RM to quickly and effectively learn meaningful ratings.
History
Volume
104Pagination
499-508Department/School
School of ComputingPublisher
IOS PressPublication status
- Published
Event title
3rd International Conference on Hybrid Intelligent SystemsEvent Venue
Melbourne, AustraliaDate of Event (Start Date)
2003-12-01Date of Event (End Date)
2003-12-01Repository Status
- Open