The effects of blade roughness and fouling on marine current turbine performance
conference contribution
posted on 2023-05-23, 07:52authored byWalker, JM, Flack, KA, Lust, EE, Schultz, MP, Luznik, L
The impact of blade roughness and biofouling on the performance of a two-bladed horizontal axis marine current turbine was investigated experimentally and numerically. A 0.8 m diameter rotor (1/25th scale) with a NACA 63-618 cross section was tested in a towing tank. The torque, thrust and rotational speed were measured in the range 5 < ë < 11 (ë = tip speed ratio). Three different cases were tested: clean blades, artificially fouled blades and roughened blades. The performance of the turbine was predicted using Blade Element Momentum theory and validated using the experimental results. The lift and drag curves necessary for the numerical model were obtained by testing a 2D NACA 63-618 aerofoil in a wind tunnel under clean and roughened conditions. The numerical model predicts the trends that were observed in the experimental data for roughened blades. The artificially fouled blades did not adversely affect turbine performance, as the vast majority of the fouling sheared off. The remaining material improved the performance by delaying stall to higher angles of attack and allowing measurements at lower ë than were attainable using the clean blades. The turbine performance was adversely affected in the case of roughened blades, with the power coefficient (CP) versus ë curve significantly offset below that for the clean case. The maximum CP for this condition was 0.34, compared to 0.42 for the clean condition.
History
Publication title
Proceedings of the 10th European Wave and Tidal Energy Conference
Pagination
1-10
ISSN
2309-1983
Department/School
Australian Maritime College
Publisher
Technical Committee of the European Wave and Tidal Energy Conference
Place of publication
Aalborg, Denmark
Event title
10th European Wave and Tidal Energy Conference
Event Venue
Aalborg, Denmark
Date of Event (Start Date)
2013-09-02
Date of Event (End Date)
2013-09-05
Rights statement
Copyright 2013 European Wave and Tidal Energy Conference