Computational Fluid Dynamics (CFD) has been used as a design tool to investigate means of improving flow uniformity in the working section of a circulating water channel. The CFD model was based on a 1/10th scale wind-tunnel model of the circulating water channel at the Australian Maritime Hydrodynamics Research Centre (AMHRC). The CFD analysis was compared with experimental results obtained from the wind-tunnel model to validate the use of the CFD model. Three changes to the design were investigated; alteration of turning vane angle, increased resistance coefficient of a honeycomb screen and addition of trailing edge extensions to the turning vanes. The turning vane angle changes resulted in little improvement in flow uniformity. Increasing the resistance coefficient of the honeycomb screen resulted in improved uniformity, but at the expense of increased pressure loss. The addition of trailing edge extensions to the turning vanes resulted in the most significant improvements in flow uniformity. These results will be useful in selecting improvements to the circulating water channel.