Existing gradient coil design methods typically require some predetermined surface to be specified upon which the precise locations of coil windings are optimised with respect to gradient homogeneity and other measures of coil performance. In contrast, in this paper an analytic inverse method is presented for the theoretical design of 3D gradient coils in which the precise 3D geometry of the coils is obtained as part of the optimisation process. This method has been described previously for cylindrical wholebody gradients and is extended here for open MRI systems. A 3D current density solution is obtained using Fourier series combined with Tikhonov regularisation. The examples presented involve a minimum power penalty function and an optional shielding constraint. A discretised set of 3D coil windings is obtained using an equi-flux streamline seeding method. Results for an unshielded example display a concentration of windings within the portion of the coil volume nearest the imaging region and looped return path windings taken away from this region. However, for a shielded example the coil windings are found to lie almost exclusively on biplanar surfaces, suggesting that this is the optimum geometry for a shielded minimum power open coil.
History
Publication title
Journal of Magnetic Resonance
Volume
207
Pagination
124-133
ISSN
1090-7807
Department/School
School of Natural Sciences
Publisher
Academic Press Inc Elsevier Science
Place of publication
525 B St, Ste 1900, San Diego, USA, Ca, 92101-4495
Rights statement
The definitive version is available at http://www.sciencedirect.com