University of Tasmania
Browse

File(s) under permanent embargo

ANSER: an Adaptive-Neuron Artificial Neural Network System for Estimating Rainfall Using Satellite Data

journal contribution
posted on 2023-05-26, 15:23 authored by Zhang, M, Shuxiang XuShuxiang Xu, Fulcher, J
We propose a new neural network model ‚Äö- Neuron-Adaptive artificial neural Network (NAN) ‚Äö- is developed. A learning algorithm is derived to tune both the neuron activation function free parameters and the connection weights between neurons. We proceed to prove that a NAN can approximate any piecewise continuous function to any desired accuracy, then relate the approximation properties of NAN models to some special mathematical functions. A neuron-Adaptive artificial Neural network System for Estimating Rainfall (ANSER) which uses NAN as its basic reasoning network is described. Empirical results show that the NAN model performs about 1.8% better than artificial Neural Network Groups, and around% better than classical Artificial Neural Networks when using a rainfall estimate experimental database. The empirical results also show that by using the NAN model, ANSER plus can (i) automatically compute rainfall amounts ten times faster; and (ii) reduce average errors of rainfall estimates for the total precipitation event to less than 10 per cent.

History

Publication title

International Journal of Computers and Applications

Volume

Vol. 2

Article number

No. 3

Number

No. 3

Pagination

215-222

ISSN

0972-9038

Publication status

  • Published

Repository Status

  • Restricted

Usage metrics

    University Of Tasmania

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC