- No file added yet -
A Comparative Investigation of Round and Fan-Shaped Cooling Hole Near Flow Fields
journal contribution
posted on 2023-05-16, 23:11 authored by Porter, JS, Jane SargisonJane Sargison, Walker, GJ, Alan HendersonAlan HendersonThis study presents velocity and turbulence data measured experimentally in the near field of a round and a laterally expanded fan-shaped cooling hole. Both holes are fed by a plenum inlet, and interact with a turbulent mainstream boundary layer Flow is Reynolds number matched to engine conditions to preserve flow structure, and two coolant to mainstream blowing momentum ratios are investigated experimentally. Results clearly identify regions of high shear for the round hole as the jet penetrates into the mainstream. In contrast, the distinct lack of high shear regions for the fan-shaped hole points to reasons for improvements in cooling performance noted by previous studies. Two different computational fluid dynamics codes are used to predict the flow within and downstream of the fan-shaped hole, with validation from the experimental measurements. One code is the commercially available ANSYS CFX 10.0, and the other is the density-based solver with low Mach number precondiiioning, HYDRA, developed in-house by Rolls-Royce plc for high speed turbomachinery flows. Good agreement between numerical and experimental data for the center-line traverses was obtained for a steady state solution, and a region of reversed flow within the expansion region of the fan-shaped hole was identified. Copyright © 2008 by ASME.
History
Publication title
Journal of Turbomachinery-Transactions of the ASMEVolume
130Issue
4Pagination
EJISSN
0889-504XDepartment/School
School of EngineeringPublisher
ASME-America Society of Mechanical EngineeringPlace of publication
USARepository Status
- Restricted
Socio-economic Objectives
Air passenger transportUsage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC