Air cooling is a highly cost-effective method for the battery thermal management systems due to its simple structure, high reliability and low maintenance cost. Different from other designs of only a single inlet/outlet structure in the literature, an air-cooling battery thermal management system with multiple inlets/outlets design was proposed in this paper. The effects of inlet/outlet positions and dimensions on the air-cooling battery thermal management system performance were thoroughly evaluated and compared. The optimal inlet/outlet position and dimension were identified based on the maximum battery temperature and the temperature uniformity in the air cooling field. The results showed that the symmetrical double inlets/outlets design (Design 4) delivered the top temperature uniformity with the lowest energy consumption. During 1C discharging at 2 m/s inlet airflow, the maximum temperature and temperature difference of the Design 4 were 1.01 K and 2.24 K lower than those of the basic Design 0 in addition to a pressure difference reduction of 7.85 Pa. Based on the optimal Design 4, 0.03 m outlet width could further reduce the maximum temperature and temperature difference by 0.47 K and 0.28 K than the worst 0.05 m design. Furthermore, 52 additional simulations under different operating conditions had proven that the superb cooling performance of the optimal design during mild discharging operations (0.5–1C).
Funding
Australian Research Council
Go Solar Group Pty Ltd
Regen Power Pty Ltd
History
Publication title
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
Pagination
1-12
ISSN
0954-4089
Department/School
School of Engineering
Publisher
Professional Engineering Publishing Ltd
Place of publication
Northgate Avenue, Bury St Edmunds, England, Suffolk, Ip32 6Bw