University of Tasmania
Browse

File(s) under permanent embargo

A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

journal contribution
posted on 2023-05-19, 18:01 authored by Adams, HD, Zeppel, MJB, Anderegg, WRL, Hartmann, H, Landhausser, SM, Tissue, DT, Huxman, TE, Hudson, PJ, Franz, TE, Allen, CD, Anderegg, LDL, Barron-Gafford, GA, Beerling, DJ, Breshears, DD, Timothy BrodribbTimothy Brodribb, Bugmann, H, Cobb, RC, Collins, AD, Dickman, LT, Duan, H, Ewers, BE, Galiano, L, Galvez, DA, Garcia-Forner, N, Gaylord, ML, Germino, MJ, Gessler, A, Hacke, UG, Hakamada, R, Hector, A, Jenkins, MW, Kane, JM, Kolb, TE, Law, DJ, Lewis, JD, Limousin, JM, Love, DM, Macalady, AK, Martinez-Vilalta, J, Mencuccini, M, Mitchell, PJ, Muss, JD, O'Brien, MJ, O'Grady, AP, Pangle, RE, Pinkard, EA, Piper, FI, Plaut, JA, Pockman, WT, Quirk, J, Reinhardt, K, Ripullone, F, Ryan, MG, Sala, A, Sevanto, S, Sperry, JS, Vargas, R, Vennetier, M, Way, DA, Xu, C, Yepez, EA, McDowell, NG
Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

History

Publication title

Nature Ecology and Evolution

Issue

9

Pagination

1285-1291

ISSN

2397-334X

Department/School

School of Natural Sciences

Publisher

Nature Publishing Group

Place of publication

United Kingdom

Rights statement

Copyright 2017 Macmillan Publishers Limited, part of Springer Nature

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC