University Of Tasmania

File(s) under permanent embargo

A new 3D printed radial flow-cell for chemiluminescence detection: application in ion chromatographic determination of hydrogen peroxide in urine and coffee extracts

journal contribution
posted on 2023-05-19, 18:28 authored by Vipul GuptaVipul Gupta, Mahbub, P, Nesterenko, PN, Brett PaullBrett Paull
A new polymer flow-cell for chemiluminescence detection (CLD) has been designed and developed by diverging multiple linear channels from a common centre port in a radial arrangement. The fabrication of radial flow-cell by 3D PolyJet printing and fused deposition modeling (FDM) has been evaluated, and compared with a similarly prepared spiral flow-cell design commonly used in chemiluminescence detectors. The radial flow-cell required only 10 h of post-PolyJet print processing time as compared to ca. 360 h long post-PolyJet print processing time required for the spiral flow-cell. Using flow injection analysis, the PolyJet 3D printed radial flow-cell provided an increase in both the signal magnitude and duration, with an average increase in the peak height of 63% and 58%, peak area of 89% and 90%, and peak base width of 41% and 42%, as compared to a coiled-tubing spiral flow-cell and the PolyJet 3D printed spiral flow-cell, respectively. Computational fluid dynamic (CFD) simulations were applied to understand the origin of the higher CLD signal obtained with the radial flow-cell design, indicating higher spatial coverage near the inlet and lower linear velocities in the radial flow-cell. The developed PolyJet 3D printed radial flow-cell was applied in a new ion chromatography chemiluminescence based assay for the detection of H2O2 in urine and coffee extracts.


Dept of Prime Minister & Cabinet

Australian Federal Police


Publication title

Analytica Chimica Acta








School of Natural Sciences


Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2018 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences