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A Novel Conflict Measurement in Decision Making
and Its Application in Fault Diagnosis

Fuyuan Xiao, Member, IEEE, Zehong Cao, Member, IEEE, and Alireza Jolfaei, Senior Member, IEEE

Abstract—Dempster–Shafer evidence (DSE) theory, which al-
lows combining pieces of evidence from different data sources
to derive a degree of belief function that is a type of fuzzy
measure, is a general framework for reasoning with uncertainty.
In this framework, how to optimally manage the conflicts of
multiple pieces of evidence in DSE remains an open issue to
support decision making. The existing conflict measurement
approaches can achieve acceptable outcomes but do not fully
consider the optimization at the decision-making level using the
novel measurement of conflicts. In this paper, we proposed a
novel evidential correlation coefficient (ECC) for belief functions
by measuring the conflict between two pieces of evidence in
decision making. Then, we investigated the properties of our
proposed evidential correlation and conflict coefficients, which
are all proven to satisfy the desirable properties for conflict
measurement, including nonnegativity, symmetry, boundedness,
extreme consistency, and insensitivity to refinement. We also
presented several examples and comparisons to demonstrate the
superiority of our proposed ECC method. Finally, we applied the
proposed ECC in a decision-making application of motor rotor
fault diagnosis, which verified the practicability and effectiveness
of our proposed novel measurement.

Index Terms—Dempster–Shafer evidence theory, Conflict man-
agement, Evidential correlation coefficient, Belief function, Fuzzy
measure, Basic belief assignments, Decision making, Fault diag-
nosis.

I. INTRODUCTION

Uncertainty is an inherent component in data science and
big data, especially in a fuzzy environment [1–3]. How to
handle and measure the uncertainty to support decisions in var-
ious applications [4–6], ranging from medicine to engineering
has attracted considerable attention in recent decades [7, 8].
Several novel fuzzy techniques and systems have been pre-
sented for reasoning with and managing uncertainty, including
the extended intuitionistic fuzzy sets [9], rough sets [10],
Z numbers [11], evidence theory [12, 13], evidential reason-
ing [14], D numbers [15], R sets and numbers [16, 17], and
other hybrid methods [18]. These theories are applied broadly
in various fields, such as image classification [19], medical
diagnosis [20, 21], information fusion [22], and decision
making [23, 24]. In these fuzziness-related approaches, one of
the most useful tools to handle uncertainty is Dempster–Shafer
evidence (DSE) theory [25, 26], which has posed several
attractive advantages: 1) quantitatively modeling uncertainty
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by means of a basic probability assignment (BBA) [27]; 2)
the belief function is a type of fuzzy measure that provides
partial information in terms of the appropriate fuzzy measure
in relation to an uncertain variable [28, 29]; 3) Dempster’s
combination rule (DCR) satisfies the commutative and asso-
ciative laws [30, 31]; 4) the results generated by the DCR have
the characteristic of fault-tolerance and relieve the uncertainty
level by the DCR [32, 33]. Consequently, DSE theory can be
of benefit for supporting decision making [34] and has been
extensively investigated in extracting the information quality
of BBA [35] and evidence reliability evaluation [36, 37].

According to previous studies of evidence theory, con-
sidering optimal management of conflicts may improve the
accuracy performance at the decision-making level in data
science applications [38–40]. Therefore, how to measure the
conflict of multiple pieces of evidence has attracted consid-
erable research attention in recent years [41–43], and many
related definitions have been presented [44] which can be used
for fuzzy system-based industrial application areas. Although
the outcomes of current conflict management methods are
acceptable in DSE theory, we assume there still remains room
for improving decision-making performance at the decision
level in terms of the measure and management of conflicts.

Therefore, in this study, we explored a novel conflict
measurement in decision making. Here, we proposed a new
evidential correlation coefficient (ECC), inspired by Jiang’s
method [45], to measure the correlation between BBAs in
DSE theory, which could be proved, analyzed, and applied in
the decision making of data science applications. Specifically,
we proposed a new evidential conflict coefficient based on
ECC to measure the conflict degree between BBAs. Then,
we analyzed and proved that the newly defined evidential
conflict coefficient has the desirable properties for conflict
measurement, including nonnegativity, symmetry, bounded-
ness, extreme consistency, and insensitivity to refinement.
Furthermore, we compared the proposed evidential conflict
coefficient with well-known methods and demonstrated a
motor rotor fault diagnosis application devised based on the
ECC.

The rest of this paper is organized as follows. The prelimi-
naries of evidence theory and some existing conflict measures
are briefly introduced in Section III and Section IV, respec-
tively. The new evidential correlation and conflict coefficients
are proposed in Section V, and their properties are analyzed
and proved. Section VI compares various conflict measures
to demonstrate the superiority of the proposed method. In
Section VII, a fault diagnosis algorithm is devised based on
the new correlation coefficient measure; then, the algorithm is
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applied to solve a motor rotor fault diagnosis problem. Finally,
Section VIII concludes this work.

II. RELATED WORKS

As we know, the traditional Dempster’s conflict coefficient
K [25] combines the mass allocated to the empty set, account-
ing for the conflict among focal elements, but it ignores the
global consistency between different pieces of evidence.

To overcome this limitation, George and Pal [46], Jousselme
et al. [47] and Cheng and Xiao [48] considered the conflict
measure from the nonintersecting parts between different
pieces of evidence. Another group of researchers quantified
the measure of conflict from an alternative perspective. For
instance, Liu [49] designed a two-dimensional conflict model
by combining Dempster’s conflict coefficient and pignistic
probability distance. Daniel [50] considered the plausibil-
ity conflict of evidence. Lefevre and Elouedi [51] studied
measured conflict by means of the distance between pieces
of evidence and the mass of an empty set. Furthermore,
some novel strategies, such as divergence measures, have also
been leveraged to measure evidential consistency [52–54]. For
example, Ma and An [52] quantified the divergence grade
of evidence by fuzzy nearness and a correlation coefficient.
Xiao [53] measured the divergence of evidence by means
of Jensen-Shannon divergence. In addition, some researchers
investigated conflict measurement from the perspective of
correlation coefficients [45, 55, 56]. For instance, Song et
al. [55] defined a correlation coefficient [57] as the cosine
of the angle between two vectors of pieces of evidence. Pan
and Deng [56] developed a correlation coefficient [58] on the
basis of Deng entropy [59]. Jiang [45] discussed the conflict
measure by taking into account the nonintersection and the
difference among focal elements [60].

In this paper, inspired by Jiang’s method [45], we propose
a novel conflict measurement in decision making and apply
it in fault diagnosis, which can improve decision-making
performance at the decision level.

III. PRELIMINARIES

Many methods handling uncertainty problems have been
presented in recent years [61–63]. As a useful uncertainty
reasoning tool, DSE theory [25, 26] has been widely applied in
various areas, such as decision making [64], classification [65,
66], reasoning [67, 68], and industrial alarm systems [69, 70].
The basic concepts and definitions [25, 26] of DSE theory are
described below.

Definition 1 (Frame of discernment)
Let Ω be a set of mutually exclusive and collective nonempty

events defined by [25, 26]

Ω = {F1, F2, . . . , Fi, . . . , Fn}, (1)

where Ω is a frame of discernment (FOD).
The power set of Ω is denoted as 2Ω:

2Ω = {∅, {F1}, {F2}, . . . , {Fn}, {F1, F2}, . . . , {F1,

F2, . . . , Fi}, . . . ,Ω},
(2)

where ∅ represents an empty set.

If Ai ∈ 2Ω, Ai is called a hypothesis.

Definition 2 (Mass function)
A mass function m in FOD Ω can be described as a

mapping from 2Ω to [0, 1] [25, 26]:

m : 2Ω → [0, 1], (3)

satisfying:

m(∅) = 0, and
∑
Ai⊆Ω

m(Ai) = 1. (4)

In DSE theory, m is also called a BBA. For Ai ⊆ Ω, if
m(Ai) is greater than zero, Ai is called a focal element. Since
a BBA can effectively express the uncertainty, various BBA
operations have been devised, including negation [71, 72] and
an entropy function [73].

Definition 3 (Belief function)
The belief function of Ai ⊆ Ω, denoted as Bel(Ai), is

defined as [25, 26]

Bel(Ai) =
∑

Ah⊆Ai

m(Ah). (5)

Definition 4 (Plausibility function)
The plausibility function of Ai ⊆ Ω, denoted as Pl(Ai), is

defined as [25, 26]

Pl(Ai) =
∑

Ah∩Ai ̸=∅

m(Ah). (6)

Bel(Ai) and Pl(Ai) represent the lower and upper bound
functions of Ai, respectively. An interval-valued belief struc-
ture can be used for an uncertainty measure [74, 75].

Definition 5 (Dempster’s combination rule)
Let m1 and m2 be two independent BBAs in FOD Ω.

Dempster’s combination rule (DCR), represented in the form
m = m1 ⊕m2, is defined as [25, 26]

m(Ai) =

{ 1
1−K

∑
Ah∩Ak=Ai

m1(Ah)m2(Ak), Ai ̸= ∅,

0, Ai = ∅,
(7)

with
K =

∑
Ah∩Ak=∅

m1(Ah)m2(Ak), (8)

where Ah, Ak ⊆ Ω and K is the coefficient of conflict between
BBAs m1 and m2.

IV. EXISTING CONFLICT MEASURES

In this section, some existing conflict measures for belief
functions are briefly introduced.

Let m1 and m2 be two BBAs with hypotheses Ai and Aj ,
respectively, on the same FOD Ω = {F1, . . . , Fi, . . . , Fn}.

Definition 6 Jousselme et al.’s distance [47]:

dJGB(m1,m2) =

√
1

2
(→m1 −→m2)

T
D (→m1 −→m2), (9)
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where →m1 and →m2 are the BBAs in vector notation and D is
a 2n × 2n matrix with elements

D(Ai, Aj) =
|Ai ∩Aj |
|Ai ∪Aj |

, (10)

in which | · | represents the cardinality function.

Definition 7 Lefèvre and Elouedi’s adapted conflict [51]:

kLE(m1,m2) = dJGB(m1,m2) ·m∩(∅), (11)

where m∩(∅) is equal to K in Eq. (8) and dJGB is Eq. (9).

Definition 8 Song et al.’s correlation coefficient [55]:

cSW (m1,m2) =
< m

′

1,m
′

2 >

∥m′
1∥ · ∥m

′
2∥

, (12)

in which m
′

is defined as{
m

′

1 = m1D,

m
′

2 = m2D,
(13)

where D is defined in Eq. (10).
Song et al.’s conflict coefficient:

kSW (m1,m2) = 1− cSW (m1,m2). (14)

Definition 9 Jiang’s correlation coefficient [45]:

cJ(m1,m2) =
c(m1,m2)√

c(m1,m1)c(m2,m2)
, (15)

where c(m1,m2) is defined as

c(m1,m2) =
2n∑
i=1

2n∑
j=1

m1(Ai)m2(Aj)
|Ai ∩Aj |
|Ai ∪Aj |

. (16)

Jiang’s conflict coefficient:

kJ(m1,m2) = 1− cJ(m1,m2). (17)

Definition 10 Cheng and Xiao’s distance [48]:

dCX(m1,m2) =

√
1

2
(→m1 −→m2)

T
Dα (→m1 −→m2), (18)

where Dα is a 2n × 2n matrix with elements

Dα(Ai, Aj) =
|Ai ∩Aj |

|Ai|
|Ai ∩Aj |

|Aj |
. (19)

V. THE NEW EVIDENTIAL CORRELATION AND CONFLICT
COEFFICIENTS

For developing an effective conflict measurement, firstly
our proposed a new method aims to satisfy the properties of
a conflict measurement. Secondly, we consider determining
how conflict identification between BBAs for improving per-
formance. Thirdly, for two arbitrary BBAs m1 and m2, we
explore the conflict from the view of m1 to m2, as well as
the conflict from the view of m2 to m1. Based on the above
context, inspired by Jiang’s work [45], we design the evidential
correlation and conflict coefficients, and specifically address an
ECC for measuring the correlation between BBAs. We then
analyze and prove the properties of ECC. Furthermore, we

define an evidential conflict coefficient and discuss desirable
properties for conflict management.

Definition 11 (ECC measure between BBAs)
Let m1 and m2 be two BBAs on Ω = {F1, . . . , Fi, . . . , Fn},

where Ai and Aj are hypotheses of BBAs. The ECC between
BBAs m1 and m2, denoted as ECC(m1,m2), is defined as

ECC(m1,m2) = cosΘ(→m1,
→m2) · cosΘ(→m2,

→m1)

=
⟨→m1,

→m2⟩
∥→m1∥∥→m2∥

· ⟨→m2,
→m1⟩

∥→m2∥∥→m1∥
,

(20)

In Eq. (20), cosΘ is a cosine angle function between →m1

and →m2:

cosΘ(→m1,
→m2) =

⟨→m1,
→m2⟩

∥→m1∥∥→m2∥
, (21)

which has a mathematical formula similar to Eq. (12) [55];
⟨→m1,

→m2⟩ is the inner product of →m1 and →m2 [45]:

⟨→m1,
→m2⟩ = →m1 · →m2 =

2n∑
i=1

2n∑
j=1

m1(Ai)m2(Aj)
|Ai ∩Aj |
|Ai ∪Aj |

;

(22)
and ∥→m∥ is the norm of →m:

∥→m∥ = [⟨→m,→m⟩] 12 =

 2n∑
i=1

2n∑
j=1

m(Ai)m(Aj)
|Ai ∩Aj |
|Ai ∪Aj |

 1
2

.

(23)
Since ⟨→m2,

→m1⟩ is equal to:

⟨→m2,
→m1⟩ =

2n∑
j=1

2n∑
i=1

m2(Aj)m1(Ai)
|Aj ∩Ai|
|Aj ∪Ai|

, (24)

it can be seen that ⟨→m1,
→m2⟩ = ⟨→m2,

→m1⟩.
Hence, Eq. (20) can be expressed in another form:

ECC(m1,m2) = [cosΘ(→m1,
→m2)]

2
=

[
⟨→m1,

→m2⟩
∥→m1∥∥→m2∥

]2
.

(25)

Theorem 1 The ECC has the properties of nonnegativity,
nondegeneracy, symmetry, and boundedness [45].

Property 1 Let m1 and m2 be two arbitrary BBAs:
P1.1 Nonnegativity: ECC(m1,m2) ≥ 0.
P1.2 Nondegeneracy: ECC(m1,m2) = 1 if and only if

m1 = m2.
P1.3 Symmetry: ECC(m1,m2) = ECC(m2,m1).
P1.4 Boundedness: 0 ≤ ECC(m1,m2) ≤ 1.

Proof (P1.1) Consider two arbitrary BBAs ma and mb in
FOD Ω; we have

ECC(ma,mb) =

[
⟨→ma,

→mb⟩
∥→ma∥∥→mb∥

]2
.

Clearly, ECC(ma,mb) ≥ 0 can be conducted, which
proves the property of nonnegativity of the ECC.

(P1.2) Consider two arbitrary BBAs ma = mb in FOD Ω
with the hypotheses of Ai and Aj; we have

ECC(ma,mb) =
⟨→ma,

→ma⟩
∥→ma∥2

=
⟨→mb,

→mb⟩
∥→mb∥2

= 1.
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(a) The variation in α and β. (b) The kECC under variation in α
and β.

(c) The kECC under variation in α. (d) The kECC under variation in β.

Fig. 2. The evidential conflict coefficient in Example 2.

ϑ is {A2} or {A1, A2}, the correlation coefficient measures
ECC(m1,m2) have the maximum value of 1 since m1 and
m2 are the same, that is, completely correlated. Hence, the
nondegeneracy property of the ECC is verified. If and only
if m1 = m2, the ECC(m1,m2) has the largest correlation
coefficient value of 1.

Furthermore, when α = 0, and ϑ = {A2}, we have
m1({A1}) = m2({A2}) = 0 and m1({A2}) = m2({A1}) =
1; when α = 1, and ϑ = {A2}, we have m1({A1}) =
m2({A2}) = 1 and m1({A2}) = m2({A1}) = 0. Under these
two cases, the correlation coefficient measures ECC(m1,m2)
have the minimum value of 0 since m1 and m2 are completely
uncorrelated.

Moreover, when α = 0 and ϑ = {A1, A2}, we have
m1({A1}) = m2({A1, A2}) = 0 and m1({A1, A2}) =
m2({A1}) = 1; when α = 1, and ϑ = {A1, A2}, we
have m1({A1}) = m2({A1, A2}) = 1 and m1({A1, A2}) =
m2({A1}) = 0. Under these two cases, the ECC(m1,m2)
measures have a minimal value of 0.25. This result is
reasonable since when ϑ = {A1, A2}, the subsets be-
tween m1({A1}) and m2({A1, A2}) and between m2({A1})
and m1({A1, A2}) have an intersection of {A1}. Hence,
ECC(m1,m2) is equal to 0.25 rather than zero.

As α increases from 0 to 0.5, regardless of the subset ϑ =
{A2} or ϑ = {A1, A2}, ECC(m1,m2) gradually increases.
This satisfies the expected result since m1 and m2 become
similar as α increases from 0 to 0.5. On the other hand, as
α increases from 0.5 to 1, regardless of the subset ϑ = {A2}
or ϑ = {A1, A2}, ECC(m1,m2) gradually decreases. This
also satisfies the intuitive result, since m1 and m2 become
dissimilar when α increases from 0.5 to 1.

Additionally, in this example, the boundedness property of
the ECC, in which ECC(m1,m2) is greater than or equal
to 0 and less than or equal to 1, is verified. Furthermore, the
results shown in Fig. 1 reveal the symmetry property of the
ECC.

Based on Definition 11, the evidential conflict coefficient
between BBAs is defined as follows.

Definition 12 (The evidential conflict coefficient between
BBAs)

The evidential conflict coefficient between BBAs m1 and

m2, denoted as kECC(m1,m2), is defined as

kECC(m1,m2) = 1− ECC(m1,m2) = 1−
[

⟨→m1,
→m2⟩

∥→m1∥∥→m2∥

]2
.

(28)

Theorem 2 The kECC has desirable properties for conflict
measurement [45], including nonnegativity, symmetry, bound-
edness, extreme consistency, and insensitivity to refinement.

Property 2 Let m1 and m2 be two arbitrary BBAs:
P2.1 Nonnegativity: kECC(m1,m2) ≥ 0.
P2.2 Symmetry: kECC(m1,m2) = kECC(m2,m1).
P2.3 Boundedness: 0 ≤ kECC(m1,m2) ≤ 1.
P2.4 Extreme consistency: 1) kECC(m1,m2) = 1 iff for the

focal elements Ai and Aj of m1 and m2, respectively, (∪Ai)∩
(∪Aj) = ∅; 2) kECC(m1,m2) = 0 iff m1 is completely equal
to m2.

P2.5 Insensitivity to refinement: for m1 and m2 refined from
FODs Ω to Ω′, kECC(m

Ω
1 ,m

Ω
2 ) = kECC(m

Ω′

1 ,mΩ′

2 ).

Proof The proofs of (P2.1)–(P2.5) are trivial.

Remark 2 Note that the larger kECC(m1,m2) is, the
greater the conflict coefficient between the BBAs. If
kECC(m1,m2) = 1, then m1 and m2 are in complete conflict;
if kECC(m1,m2) = 0, then m1 and m2 are in no conflict.

Next, an example is presented to illustrate the nonnegativity
and boundedness properties of kECC .

Example 2 Assume there are two BBAs m1 and m2 in Ω:

m1 : m1({A1}) = α,m1({A2}) = β,m1({A3}) = 1− α− β;

m2 : m2({A1}) = 0.7,m2({A2}) = 0.3.

In Example 2, m1 changes according to α and β, which
are set within [0,1] and satisfy α + β ≤ 1, as shown in
Fig. 2(a). Then, as α and β vary, the corresponding correlation
coefficient measures are shown in Figs. 2(b), 2(c) and 2(d).

Fig. 2 verifies the nonnegativity and boundedness properties
of kECC , where kECC ≥ 0 and 0 ≤ kECC ≤ 1.

As shown in Fig. 2(b), when α = 0.7 and β =
0.3, we have m1({A1}) = m2({A1}) = 0.7 and
m1({A2}) = m2({A2}) = 0.3. The correlation conflict
measure kECC(m1,m2) has the smallest value of 0 since
m1 and m2 are exactly the same, that is, completely not
in conflict. On the other hand, when α = β = 0, we have
m1({A1}) = m2({A2}) = 0 and m1({A3}) = 1. In this
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M = {m1, ...,mj , ...,mk} be k pieces of evidence modeled
from the collected data of the sensors. A threshold ξ can be set
in advance for making a decision. The goal of the algorithm is
to diagnose which type of fault occurs according to the given
BBAs {m1, ...,mj , ...,mk}, and threshold ξ.
Step 1: A correlation matrix is constructed by leveraging the

ECC:

MECC =

ECC(m1,m1) · · · ECC(m1,mk)
...

...
...

ECC(mk,m1) · · · ECC(mk,mk)

 .

(29)
Step 2: The support degree of mj is calculated as:

SD(mj) =
k∑

i=1|i̸=j

ECC(mi,mj). (30)

Step 3: The credibility degree of mj is calculated as:

CD(mj) =
SD(mj)∑k
j=1 SD(mj)

. (31)

Step 4: The weighted average evidence (WAE) is obtained as:

WAE(m) =
k∑

j=1

CD(mj)×mj . (32)

Step 5: The WAE is fused k − 1 times with the DCR:

Fusion(m) = ((m⊕m)1 ⊕ · · · ⊕m)(k−1). (33)

Step 6: The m(Fo) with the highest value is selected:

o = argmax
1≤i≤n

{m(Fi)}. (34)

Step 7: The fault type is determined as follows:{
if m(Fo) ≥ ξ, Fo is the fault type,
if m(Fo) < ξ, Cannot be determined.

(35)
This fault diagnosis based on the ECC is given in Algo-

rithm 1.

Algorithm 1: The fault diagnosis.
Input: Θ = {F1, ..., Fi, ..., Fn};

M = {m1, ...,mj , ...,mk};
The threshold ξ;

Output: The type of fault;
1 for j = 1; j ≤ k do
2 Construct correlation matrix MECC by Eq. (29);
3 end
4 for j = 1; j ≤ k do
5 Calculate the support degree SD(mj) by Eq. (30);
6 end
7 for j = 1; j ≤ k do
8 Generate the credibility degree CD(mj) by Eq. (31);
9 end

10 for j = 1; j ≤ k do
11 Obtain the WAE(m) by Eq. (32);
12 end
13 Generate the Fusion(m) by Eq. (33);
14 Select the m(Fo) by Eq. (34);
15 Determine the fault type by Eq. (35).

TABLE VII
THE BBAS IN THE APPLICATION OF FAULT DIAGNOSIS.

BBAs F1 F2 F3 F4 Θ

m1 0.06 0.68 0.02 0.04 0.20
m2 0.02 0.00 0.79 0.05 0.14
m3 0.02 0.58 0.16 0.04 0.20

B. Application - fault diagnosis

In the motor rotor fault diagnosis application [45], three
types of sensors are located at different places to collect
the acceleration, velocity, and displacement information for
a motor rotor. Then, the collected data are modeled as BBAs,
as shown in Table VII, where m1, m2, and m3 represent three
pieces of evidence from the sensors. There are four states for a
motor rotor, which establishes an FOD Θ = {F1, F2, F3, F4}:
F1 represents “normal operation”, F2 represents “unbalance”,
F3 represents “misalignment”, and F4 represents “pedestal
looseness”. In this application, the threshold for making a
decision is set to 0.7 based on [45].

A decision is difficult to make based solely on the BBAs
m1, m2 and m3. Specifically, m1 has a value of 0.68, which
indicates F2: “unbalance”; m2 has a value of 0.79, which
indicates F3: “misalignment”; and m3 has a value of 0.58,
which indicates F2: “unbalance”. Since m1(F2) = 0.68 and
m3(F2) = 0.58, which are less than the threshold 0.7, a
decision cannot be made on the basis of m1 and m2, whereas
according to m3, the diagnosis result is F3. As a result, conflict
exists between m1, m2 and m3, so an accurate decision is
difficult to make under such circumstances. Thus, a conflict
management method is necessary to improve the decision
level.
Step 1: The correlation matrix MECC is constructed as:

MECC =

1.0000 0.0335 0.9516
0.0335 1.0000 0.1517
0.9516 0.1517 1.0000

 .

Step 2: The support degree of mj is calculated as:

SD(m1) = 0.9851;SD(m2) = 0.1852;

SD(m3) = 1.1033.

Step 3: The credibility degree of mj is calculated as:

CD(m1) = 0.4333;CD(m2) = 0.0815;

CD(m3) = 0.4853.

Step 4: The weighted average evidence (WAE) is obtained as:

m(F1) = 0.0373;m(F2) = 0.5761;

m(F3) = 0.1507;m(F4) = 0.0408;

m(Θ) = 0.1951.

Step 5: The WAE is fused 2 times with the DCR:

m(F1) = 0.0102;m(F2) = 0.8964;

m(F3) = 0.0674;m(F4) = 0.0113;

m(Θ) = 0.0148.
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TABLE VIII
COMPARISON OF DIFFERENT METHODS IN THE APPLICATION OF FAULT DIAGNOSIS.

Methods F1 F2 F3 F4 Θ Fault type

Dempster [25] 0.0205 0.5230 0.3933 0.0309 0.0324 Cannot be determined
Murphy [39] 0.0112 0.6059 0.3508 0.0153 0.0168 Cannot be determined
Deng et al. [40] 0.0111 0.7730 0.1856 0.0139 0.0165 unbalance
Jiang [45] 0.0108 0.8063 0.1534 0.0134 0.0162 unbalance
Proposed method 0.0102 0.8964 0.0674 0.0113 0.0148 unbalance

Step 6: The m(Fi) with the highest value is selected:

o = argmax
1≤i≤n

{m(Fi)} = 2.

Step 7: Since m(F2) = 0.8964, which is greater than the
threshold 0.7, the fault type is F2.

C. Discussion

To demonstrate the effectiveness of the proposed conflict
management method, we compare the proposed method with
related works, including Dempster’s [25], Murphy’s [39],
Deng et al. ’s [40], and Jiang’s [45] methods. The re-
sults generated by different conflict management methods
are shown in Table VIII. Dempster’s and Murphy’s methods
cannot determine the fault type because their m(F2) values of
0.5230 and 0.6059, respectively, are smaller than the threshold
of 0.7. On the other hand, the methods of Deng et al. and
Jiang and the proposed method can diagnose the fault type of
the motor rotor as ”unbalance”, as they obtain m(F2) values
of 0.7730, 0.8063 and 0.8964, respectively. Moreover, the
proposed method has the highest value of 0.8964 and can thus
diagnose the fault type with a higher rate of identification.

VIII. CONCLUSIONS

In this paper, we explored a novel conflict measurement
in decision making and its application in fault diagnosis.
Here, a new evidential correlation coefficient, called ECC,
was proposed for modeling belief functions in evidence theory
to support decision making in an uncertain environment. The
properties of the ECC were defined and analyzed, and the
ECC was confirmed to have the properties of nonnegativity,
nondegeneracy, symmetry, and boundedness. Furthermore, on
the basis of the ECC, an evidential conflict coefficient was
proposed to measure the conflict between two pieces of
evidence. The evidential conflict coefficient was proved to
have the desired properties for conflict measurement, including
nonnegativity, symmetry, boundedness, extreme consistency,
and insensitivity to refinement.

We provided several examples to compare our proposed
ECC method with the well-known approaches to demonstrate
the superiority of this novel conflict measurement. We also
applied the ECC in a fault diagnosis application, and the re-
sults verified that our proposed conflict measurement is shown
to more efficiently handle uncertainty compared with existing
approaches. In summary, our proposed conflict measurement
provides a promising way to manage conflict from multiple
pieces of evidence and improve the performance of decision

making, illustrating a good potential alternative to the analysis
of big data from multiple sources. In future work, we intend to
further study the properties of ECC as well as its application
in more complex environments.
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