During the processing and handling of commercial blue crab (Callinectes sapidus), Listeria monocytogenes can potentially contaminate cooked meat and grow to hazardous levels. To manage this risk, predictive models are useful tools for designing and implementing preventive controls; however, no model specific for blue crab meat has been published or evaluated. In this study, a cocktail of L. monocytogenes strains was added to pasteurized blue crab meat, which was incubated at storage temperatures from 0 to 35°C. At selected time intervals, L. monocytogenes was enumerated by direct plating onto modified Oxford agar. A primary model was fitted to kinetic data to estimate the lag-phase duration (LPD) and growth rate (GR). Listeria monocytogenes replicated from 0 to 35°C, with GR ranging from 0.004 to 0.518 log CFU/h. Overall, the LPD decreased with increasing temperature, displaying a maximum value of 187 h at 0°C; however, this trend was not consistent. The LPD was not detected at 10°C, and it occurred inconsistently from trial to trial. A secondary GR model (R2 = 0.9892) for pasteurized crab meat was compared with the L. monocytogenes GR in fresh crab meat, demonstrating bias and accuracy factors of 0.98 and 1.36, respectively. The model estimates varied from other published data and models, especially at temperatures ≥5°C, supporting the need for a specific predictive tool for temperature deviations.
History
Publication title
Journal of Food Protection
Volume
80
Issue
11
Pagination
1872-1876
ISSN
0362-028X
Department/School
Tasmanian Institute of Agriculture (TIA)
Publisher
Int Assoc Food Protection
Place of publication
6200 Aurora Ave Suite 200W, Des Moines, USA, Ia, 50322-2863
Rights statement
Copyright 2017 International Association for Food Protection