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Abstract 16 

Well-designed agricultural decision support tools (DS) equip farmers with a rapid, easy way to compare 17 

multiple scenarios as well as the influence of different management strategies on crop production. One 18 

such tool, CropARM (http://www.armonline.com.au) assists users in establishing a framework of risk, 19 

with simulations incorporating climate scenarios and management actions, such as fertiliser rates, 20 

sowing time, row spacing, and irrigation regimes. When used in conjunction with soil and climate 21 

characteristics, biophysical model-based DS tools provide information that complements farmer 22 

experience and helps establish a framework for risk management given local climate characteristics.  In 23 

this study, we used the APSIM model to provide the simulation data necessary to expand CropARM 24 

for new management conditions and environments in southern Australia. Prior to this work being 25 

undertaken, no CropARM data was available for Tasmania and no sites in CropARM allowed users to 26 

compare rainfed and irrigated wheat crops. This study collated data from 27 plots across ten sites in 27 

Tasmania, from the period 1981 to 2011, under both rainfed and irrigated conditions. APSIM was 28 

parameterised with these field observations and the subsequent scenario simulations were used to 29 
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populate CropARM. Wheat cultivars used in the parameterisation of APSIM include Brennan, Isis, 30 

Mackeller, Revenue, Tennant (winter types) and Kellalac (spring type). The validation showed reliable 31 

model parameterisation, with an r2 value of close to 1, which is considered satisfactory. 670,680 32 

simulations were undertaken and incorporated within the CropARM database for wheat cropping 33 

systems across Tasmania. With regularly updated climate streams, the free online framework provided 34 

by CropARM gives users the ability to assess downside risks associated with several different crop 35 

management alternatives, and by simultaneously comparing multiple scenarios, users can select 36 

management options that are likely to adhere most closely with their desired management objectives. 37 

 38 
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  41 

1. Introduction 42 

Agricultural decision support (DS) tools equip users with a rapid and cost-effective means of contrasting 43 

multiple scenarios to gauge the influence of different management strategies on farm production and 44 

profitability (Nelson et al., 2002; Hochman and Carberry 2011; Rose et al., 2016). Such tools provide 45 

information that complements farmer experience and establishes a framework for risk management 46 

where declining profitability and increasing climatic variability within agriculture increasingly pose 47 

complex challenges (Hochman and Carberry 2011; Jakku and Thorburn 2010). Such challenges 48 

necessitate the integration of scientific knowledge into decision support tools that can assist primary 49 

producers contemplating farm management decisions (Jakku and Thorburn 2010). Agricultural DS tools 50 

are typically software applications, commonly based on models describing various biophysical 51 

processes in farming systems and the response to varying management practices (Jakku and Thorburn 52 

2010; Rose et al., 2016). Decision support tools designed for assessing crop management often require 53 

data regarding climate, soils, farm management and crop genotype (Carberry et al., 2002; Nelson et al., 54 

2002; Hochman et al., 2009). Data is typically collected directly from archived records, such as the 55 

national climate and soil databases available in Australia (SILO climate data and ASRIS; 56 



3 
 

https://www.longpaddock.qld.gov.au/silo/, http://www.asris.csiro.au/) and is used in biophysical 57 

models including the Agricultural Production Systems Simulator (APSIM). APSIM uses a modular 58 

framework that allows users to ‘plug-and-play’ management as well as soil and crop components in a 59 

graphical user interface (Holzworth et al., 2006). This feature circumvents the need for model derivation 60 

from first principles or programming coding underlying mathematics in low-level programming 61 

languages, isolating execution semantics of computer architecture from users and increasing ease of 62 

use.  63 

 64 

The APSIM model has been used to provide simulation data that underpins DS tools including 65 

FARMSCAPE (Carberry et al., 2002), Yield Prophet (Hochman et al., 2009) and Whopper Cropper 66 

(Nelson et al., 2002). The Whopper Cropper software tool was developed in consultation with public 67 

and private advisors/consultants, partly in response to demand for access to the cropping systems 68 

modelling capability of APSIM (Keating et al., 2003). Whopper Cropper provides information on the 69 

impact of climate risk on crop yields for crop management alternatives beyond the experience of 70 

individual farmers, using historical climate data to obtain seasonal cropping perspectives (Nelson et al., 71 

2002). Recently, Whopper Cropper was transformed into the online set of tools called Agricultural Risk 72 

Management, hosted by the Queensland Government (ARM online, see 73 

http://www.armonline.com.au/#/wc. APSIM simulations have been used to provide information for the 74 

ARM tools, such as NitrogenARM and CropARM. Each tool has user-defined management options 75 

including soil type, water profile capacity at sowing, cultivar and plant density as well as sowing date 76 

and nitrogen (N), amongst others. Additionally, CropARM calculates growers' exposure to risk when 77 

comparing various management inputs such as applications of N fertiliser along with resource-based 78 

options such as stored soil water. When used in conjunction with soil and climate characteristics, 79 

biophysical model-based DS tools provide information that enhances farm manager experience and 80 

provides a framework for risk management given prevailing climate characteristics as determined by 81 

location, for example early frost incidence or the influence of heat waves during anthesis, that can 82 

severely penalise grain yield. 83 

http://www.asris.csiro.au/
http://www.armonline.com.au/#/wc
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Effects of different management locations and cultivars in CropARM can be displayed alone or in 84 

combination with other inputs. Each simulation uses 115 years of climate records and the APSIM model 85 

to simulate year-to-year variability in yields along with related information including crop biomass, 86 

grain protein, in-crop rainfall, days to harvest, water use efficiency and minimum and maximum in-87 

crop temperature. The APSIM model (version 7.8) (Keating et al., 2003), has been shown to 88 

competently simulate crop growth and yield, and water and nitrogen balances across a wide range of 89 

environments (Acuna et al., 2015; Keating et al., 2003; McCormick et al., 2015; Robertson and Lilley 90 

2016; Wang et al., 2010). The CropARM outputs use climate records from SILO and the national soil 91 

grid provided by the Australian Soil Resource Information Systems (ASRIS) 92 

(http://www.asris.csiro.au/). This enables users to make informed decisions about the risk associated 93 

with various management conditions whilst taking account of interactions between crop biology with 94 

climate (phenology) given similar growing season conditions experienced in the past.  95 

 96 

Like all DS tools, CropARM can only include a set number of crops types and management alternatives. 97 

Prior to this study, the DS tool only contained data from mainland Australia and excluded data for the 98 

southern-most state, Tasmania. Further, agronomic information for mainland sites contains only 99 

simulations of rainfed crops. In order to keep pace with growing dairy industry expansion in Tasmania, 100 

the Grains Research and Development Corporation (GRDC) recently invested in new research projects 101 

to double Tasmanian grain production in the next five years to approximately 160,000 tonnes/annum 102 

(Ryan, 2015). With the rollout of new irrigation schemes across the State from a $220 million 103 

investment (http://www.tasmanianirrigation.com.au), grain is becoming commercially competitive with 104 

other high-value crops such as poppies (Ryan, 2015). Such developments mean that farmers in 105 

Tasmania may be more inclined to produce cereals and dual-purpose grain crops, which are common 106 

in high-rainfall zones of mainland Australia (Harrison et al., 2011). As irrigation infrastructure becomes 107 

more available, users will require more agronomic information on irrigation and management option 108 

effects on crop yields in different locations of Tasmania. 109 

 110 
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The purpose of this study was to parameterise APSIM using observed wheat crop production data from 111 

ten sites across Tasmania, and then to incorporate this data into CropARM, since prior to this work no 112 

CropARM data were available for the State. Additionally, there were no options for comparing between 113 

rainfed and irrigated crop yields within CropARM. Effects of irrigation on crop growth will likely form 114 

the basis of decisions made by many Tasmanian farmers regarding whether to sow grain crops or to 115 

apply additional water within the growing season. The new CropARM outputs will allow users to 116 

contrast relative differences in grain yield caused by management or genotypic differences in multiple 117 

regions, allowing insights into of how crop irrigation decisions influence crop phenology and grain 118 

yield. 119 

 120 

2. Materials and Methods 121 

2.1. Locations  122 

Ten sites were selected as representative of the Tasmanian wheat growing regions. The ten sites span 123 

from the north-west coastal region (Forthside, Sassafras) to the Meander Valley (Hagley, Westbury), 124 

the northern Midlands (Campbell Town, Cressy, Epping Forest, Longford, Symons Plains), and into 125 

the southern Midlands (Cambridge) (Fig. 1). The soil types across the ten sites are diverse due to 126 

variations in climate, landscape and geology and include Sodosols, Dermosols and Ferrosols soils 127 

(Table 1). There is a significant gradient in average annual rainfall across the ten sites of over 450 mm 128 

per year, from Forthside in the central coast region receiving an annual rainfall of 950 mm to Campbell 129 

Town and Cambridge in the southern region of the state recording 500 mm annually (Table 1). Mean 130 

annual rainfall generally ranges from 500 to 550 mm in the Southern Midlands, although in some 131 

locations the average rainfall is 700 mm due to the impact of easterly rainfall systems. The Southern 132 

Midlands is also prone to severe frosts (Grose et al., 2010). 133 

 134 

 135 

 136 

 137 
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 138 

Fig. 1. Ten site locations from the north-west to the south-east within Tasmania. 139 

 140 

2.2. Parameterisation 141 

Management and yield data of wheat from 27 field trials at 10 locations for the period of 1981 to 2011 142 

were obtained from Acuna et al., (2015). Site details for field wheat trials are shown in Table 1, along 143 

with mean annual climate statistics. Parameterised APSIM files (version 7.8) were obtained from Acuña 144 
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et al., (2015). The field trials as reported by Acuna et al., (2015) were sown with winter wheat cultivars 145 

(Brennan, Isis, Mackellar, Revenue or Tennant) and a long-season spring wheat (Kellalac), with sowing 146 

dates ranging from April to September. Typically, wheat crops in Tasmania are sown in April/May and 147 

are harvested in November/December/January (depending on seasonal rainfall and temperature. All 148 

cultivars are available in APSIM except for Isis, which was substituted with a new variety adapted to 149 

Tasmania (Mackellar_Tas). Nitrogen fertiliser was typically applied at sowing at a rate of 25 kg N/ha, 150 

with a further top-dressed application in early spring of 50 kg N/ha. Approximately half of the field 151 

trials received 24 - 60 mm of irrigation, and two trials received a maximum of 240 mm of irrigation 152 

while the remainder were rainfed (Acuna et al., 2015). Trials were managed to minimise losses due to 153 

weed competition and pest damage. Soil parameters were obtained from the APSoil database for 154 

Tasmania to represent the prevailing conditions at each site, and long-term climate data was sourced 155 

from the Australian Bureau of Meteorology SILO website (http://www.longpaddock.qld.gov.au/silo/ 156 

Jeffery et al., 2001). Further details of site management details and modelling are given in Acuña et al., 157 

(2015). 158 

 159 

Table 1. Site, region, system, soil type, latitude and longitude, elevation (meters above sea level), mean 160 

annual rainfall, and mean annual maximum and minimum temperature (climate values are means for 161 

the period 1981 to 2011). 162 

Site Region System Soil type Lat. (°S) Elevation Rainfall (mm) Annual temp (°C) 

        Long. (°E) 
  

Max Min 

Cambridge SE Irrigated & rainfed Sodosol 42.79°,147.42° 45 501 17.5 8.1 

Campbell Town NM Rainfed  Dermosol 41.92°,147.49° 209 499 17.6 5.6 

Cressy NM Irrigated & rainfed Sodosol 41.68°,147.08° 149 628 17.2 5.1 

Epping forest NM Rainfed Sodosol 41.76°,147.35° 195 628 17.2 5.1 

Hagley MV Rainfed Dermosol 41.52°,146.90° 149 833 16.9 4.6 

Forthside NM Irrigated Ferrosol 41.22°,146.27° 142 965 16.1 7.4 

Longford NM Irrigated Sodosol 41.59°,147.12° 159 628 17.2 5.1 

Sassafras NW Rainfed Ferrosol 41.28°,146.49° 136 777 16.9 8.2 

Symmons Plains NM Rainfed Sodosol 41.64°,147.25° 159 628 17.2 5.1 

Westbury MV Rainfed Dermosol 41.52°,146.83° 169 833 16.9 4.6 

Abbreviations: SE, south-east; NM, northern Midlands; MV, Meander Valley. Soil type, Isbell, (1996). 163 

 164 

2.3. Factorial APSIM simulations for populating CropARM 165 

http://www.longpaddock.qld.gov.au/silo/
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We undertook simulations for wheat in Tasmania using several starting soil conditions and management 166 

options for the ten sites using the APSIM files described above. Each combination of site by 167 

management in Table 2 and 3 defines an individual simulation. The simulations were run on a daily 168 

time step from 1901 to 2015 with daily climate variables using the historical climate data available from 169 

the Australian Bureau of Meteorology SILO website (http://www.longpaddock.qld.gov.au/silo/ Jeffery 170 

et al., 2001), resulting in approximately 200,000 simulations.  171 

 172 

Table 2. Management factors and associated number of levels within the APSIM factorial simulations 173 

(Zadoks et al., 1974) 174 

Factor Levels 

Sowing date 15 April, 15 May, 15 June, 15 July 

Seeding rate (plants/m2) 60, 80, 110, 150, 200 and 250 

Row spacing 1 (250 mm) 

Cultivar Mackellar_Tas, Revenue, Tennant 

Initial stored soil water Soil profile 25%, 50% or 75% full 

Initial soil N (kg N/ha) 10, 25 and 50  

Sowing N applied (kg N/ha) 0, 50 and 100 

Top dressing N (kg N/ha) 60 (kg/ha) applied once, twice or thrice (GS 31, 39, 46) 

System Rainfed and irrigated 

Irrigation regime Light - Zadoks stage > 10 and < 71, soil water deficit (SWD) > 70  

Light at flowering - Zadoks stage > 62 and < 68, SWD > 70 

Heavy at flowering - Zadoks stage > 62 and < 68, SWD > 10   

Heavy throughout growing season - Zadoks stage > 10 and < 71, SWD > 10 

  175 

A surface residue of wheat biomass of 100 kg/ha was initiated in the model, and water, nutrient and 176 

surface organic matter levels were reset annually post-harvest (February 1) (Table 2). Table 3 shows 177 

the soil type and subsequent soil description and depth, and plant available water capacity (PAWC) for 178 

each site, with each row representing an individual simulation within APSIM in combination with Table 179 

2.  180 

 181 

Table 3. Site, soil type, description and depth (mm), and plant available water content (PAWC) within 182 

the APSIM factorial simulations.   183 

Site Soil Type Soil description Depth (mm) Wheat PAWC (mm) 

http://www.longpaddock.qld.gov.au/silo/
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Cambridge Sodosol Loam 1500 148 

Campbell Town Dermosol Fine sandy loam 1500 217 

Cressy Sodosol Fine sandy loam 1500 217 

   Clay loam 800 96 

   Loam 1400 221 

Epping Forest Sodosol Fine sandy loam 1500 217 

   Clay loam 800 96 

   Loam 1400 221 

Hagley Demosol Fine sandy loam 1500 217 

   Clay loam 800 96 

   Loam 1400 221 

Forthside Ferrosol Red Ferrosol 1200 92 

Longford Sodosol Fine sandy loam 1500 217 

   Loam 1400 221 

Sassafras Ferrosol Red Ferrosol 1200 92 

   Sandy loam 1200 143 

Symmons Plains Sodosol Fine sandy loam 1500 217 

   Clay loam 800 96 

   Loam 1400 221 

Westbury Dermosol Clay loam 800 96 

   Loam 1400 221 

   Medium Clay 1100 206 

 184 

2.4. Statistical analyses 185 

Model performance was evaluated using a range of model evaluation statistics based on the work of 186 

Tedeschi, (2006). These included the coefficient of determination (r2, a measure of closeness between 187 

simulated and measured values, ideal = 1), Pearson’s correlation coefficient (r, describes the linear 188 

relationship between simulated and measured values, ideal = 1), mean bias (difference between 189 

measured and simulated means, ideal = 0), mean prediction error (MPE, model efficiency as a 190 

percentage of the mean, ideal = < 5%), modelling efficiency (MEF, level of variation explained by 191 

simulated values, ideal = 1), variance ratio (v, ratio of variance in measured to simulated values, ideal 192 

= 1) (Cullen, 2008; Pembleton et al., 2013). 193 

 194 

3. Results 195 

3.1. APSIM Parameterisation 196 
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The parameterised outputs from APSIM are compared with the observed field data from the ten sites in 197 

Fig. 3. Visual inspection indicates that the model adequately simulated the measured observed data in 198 

terms of total grain yield. Fig. 3 demonstrates reliable model parameterisation, with simulated grain 199 

yields that were close to observed values from the ten sites. The model evaluation statistics were close 200 

to ideal. A variance ratio of less than unity indicates that a greater level of variation existed in the 201 

simulated data compared with the observed data, and this was likely because simulations included 202 

multiple years of climatic data (whereas measurements were conducted over only one season). Overall, 203 

the evaluation statistics indicate that the model adequately simulated wheat grain yields under rainfed 204 

and irrigated conditions with an acceptable degree of confidence.  205 

 206 

Fig. 3. Simulated and observed total wheat grain yields (t/ha) for the ten sites under rainfed (open 207 

circle) and irrigated (closed circle) conditions. The dashed line is 1:1. 208 

 209 

3.2. APSIM validation 210 

Validation is an important step in verifying the model performance involving a comparison between 211 

field observations and simulation outputs (Ahmed et al., 2016). Field wheat data from the sites of Cressy, 212 

Symmons Plains, Epping Forest and Burnie were collated for the growing seasons of 2005 to 2010, 213 

from various wheat cultivars under rainfed conditions. The performance of APSIM was compared with 214 

the observed field data obtained during this period, using data that were not used in the parameterisation 215 
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of the model. Fig. 4 demonstrates reliable model validation, with simulated grain yields that were close 216 

to observed values for the four sites. Similar to the model parameterisation, the model evaluation 217 

statistics were close to ideal, indicating that the model adequately simulated wheat grain yields under 218 

rainfed conditions with an acceptable degree of confidence (Table 4).  219 

 220 

Fig. 4. Simulated and observed total wheat grain yields (t/ha) for the four sites under rainfed conditions. 221 

The dashed line is 1:1. 222 

 223 

Table 4. Model validation statistics for the observed and simulated mean total grain yield (kg/ha) across 224 

the ten sites. Abbreviations: r2 = coefficient of determination;  MPE = mean prediction error; MEF = 225 

modelling efficiency; v = variance ratio; Cb = bias correction factor (Tedeschi, 2006). 226 

Evaluation statistics Grain yield (t/ha) 

Mean (Actual) 5.42 

Mean (Simulated) 5.58 

Std. Dev (Actual) 1.49 

Std. Dev (Simulated) 1.37 

  
Evaluation statistics                                      Value 

r2 0.83 

MPE 11% 

MEF 0.82 

v 1.09 

Cb 1.00 

 227 
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3.3. Incorporating APSIM simulations in CropARM 228 

CropARM outputs allow users to contrast relative differences in grain yield caused by management or 229 

genotypic differences in multiple regions as well how different decisions on crop irrigation may 230 

influence crop phenology and grain yield. The first step users must complete is site selection (Fig 5). 231 

 232 

Fig. 5. CropARM users must first select a site from a given state. In this example, the site of Campbell 233 

Town is chosen. 234 

 235 

Following the site selection the next step is selecting the scenario options to analyse as illustrated for 236 

Campbell Town in Fig 6. In this case, the site and management options from Table 2 and 3 are shown. 237 

 238 

Fig. 6. The CropARM scenario options available for the site of Campbell Town, illustrating the site and 239 

management options from Table 2 and 3. 240 

 241 

3.4. Sowing date and irrigation outputs 242 
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Methods that allow CropARM users to contrast outputs, for example different sowing dates, cultivars, 243 

and N fertiliser applications during the growing season are shown in Figs. 7 and 8 for Campbell Town. 244 

These figures demonstrate how crop management influences the biophysical factors governing yield, 245 

such as irrigation and water use efficiency (WUE). Fig. 7a shows rainfed simulations for the four 246 

sowing dates (April, May, June, and July), with three wheat cultivars of Mackellar_Tas (representing 247 

Mackellar parameterised to Tasmania), Revenue, and Tennant. The soil type is a fine sandy loam and 248 

the initial soil water content was 50%, a sowing density of 150 plants/m2, starting N of 50 kg/ha, a 249 

sowing N of 50 kg/ha and top dressing N application rate of 120 kg N/ha. The simulated results show 250 

that the timing of sowing is having a significant effect on the median and variability in grain yield, 251 

where under rainfed conditions sowing earlier, (April or May) grain yields are both greater and less 252 

variable in contrast to sowing in June and particularly July. On the other hand, there are only slight 253 

differences in the variation of the grain yields between the three cultivars (Fig. 7a).  254 

 255 

Fig. 7b shows the simulation results for the cultivar Mackellar_Tas, with two levels of irrigation; lightly 256 

irrigated at flowering and heavy irrigation throughout the growing season along with the rainfed 257 

simulations, under the four sowing dates of April, May, June, and July. Both light irrigation at flowering 258 

or heavy irrigation throughout the growing season increases yields and reduces the variability in the 259 

expected yields in contrast to the rainfed simulations. Application of irrigation water also reduces the 260 

variance in yields between the monthly sowing times in contrast to the rainfed simulations, particularly 261 

when the crop is heavily irrigated through the growing season (Fig. 7b). Heavy irrigation for late sowing 262 

(July) may reduce the yield loss experienced with later sowing of rainfed crops at Campbell Town. 263 
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 264 

Fig. 7. Simulated wheat grain yield (t/ha) for sowing dates of April, May, June, and July, for the 265 

cultivars Mackellar_Tas, Revenue, and Tennant under rainfed conditions (a). Simulated grain yield 266 

(t/ha) for sowing dates of April, May, June, and July, for the cultivar Mackellar under rainfed, and 267 

irrigation light at flowering and heavily irrigated throughout the growing season (b) box plots (5th, 25th, 268 

50th, 75th and 95th percentile) for the site of Campbell Town.  269 

 270 

For Campbell Town with two levels of irrigation the amount of applied irrigation water steadily 271 

increases from sowing in April through to July. The irrigation amount applied under the light at 272 

flowering scenario increases from 33 mm/ha when sown in April through to 61 mm/ha when sown in 273 

July, however grain yields decline with a later sowing date (Fig. 7b), despite an increase in irrigation 274 

water. Similarly, under the heavy irrigation scenario, the irrigation amount applied also increases from 275 
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217 mm/ha when sown in April to 273 mm/ha when sown in July, along with an increase in grain yield 276 

from sowing in April through to July (Fig. 7b). The management effect of various irrigation regimes is 277 

also reflected in the water use efficiency of each scenario (Fig. 8). The greatest water use efficiency 278 

was achieved under the light irrigation at flowering scenario in comparison to the rainfed (excluding 279 

April where there was no discernible difference), and particularly the heavy irrigation through the 280 

growing season scenario. Acuna et al., (2015) indicated that the timing of sowing annual crops 281 

commonly has only a small effect on total crop water use but can have a marked effect on water use 282 

efficiency, adding that the highest water use efficiencies are consistently achieved when the crop is 283 

sown at the optimum time (too early risks early seed death due to disease or water limitation, as well as 284 

frost during flowering, and sowing too late has multiple other risks, as described below). Irrigation at 285 

flowering is generally used in reproductive organs rather than leaves, which also increases grain WUE. 286 

Fig. 7b shows that the optimum yields are being achieved when the crop is sown in April for both the 287 

rainfed and lightly irrigated at flowering scenarios, accordingly the highest WUE’s are also being 288 

achieved with an April sowing. Under the rainfed scenario, the WUE declines by 18% from a median 289 

of 16.5 kg/mm in April to a median of 13.5 kg/mm in both June and July. Similarly, under the light 290 

irrigation at flowering scenario, the largest WUE is achieved when sowing in April (median 16.5 kg/mm) 291 

declining by 8% to June (median 15.1 kg/mm). April sowing also achieves the highest WUE with 292 

respect to heavy irrigation however, the WUE is commonly much lower in comparison to both the 293 

rainfed and light irrigation at flowering scenarios (Fig. 8). For Campbell Town, late sowing reduces 294 

WUE. This occurs for a number of reasons, including, sowing into colder soil delays crop establishment 295 

and early vigour, and increasing the proportion of crop evapotranspiration lost as soil evaporation as 296 

well as a higher likelihood of heat stress around anthesis and during grain development (Lisson and 297 

Cotching, 2011). Sowing too late increases the likelihood of heat stress pre- and post-anthesis, as can 298 

be represented by the mean maximum temperature for this period in CropARM. The mean maximum 299 

temperature in the four week period surrounding flowering increased from 18°C when sown in April to 300 

21°C when sown in July (Fig. 9).  301 

 302 
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 303 

Fig. 8. Simulated water use efficiency (kg grain/[mm rain + irrigation]) of Mackellar_Tas for sowing 304 

dates April, May, June, and July under rainfed conditions, light irrigation at flowering and heavy 305 

irrigation through the season, box plots (5th, 25th, 50th, 75th and 95th percentile) for the site of Campbell 306 

Town. 307 

 308 

 309 

Fig. 9. Probability of exceedance mean maximum temperature two weeks pre and post anthesis. The 310 

results are for the sowing dates of April, May, June, and July, using Mackellar_Tas cultivar for the site 311 

of Campbell Town. 312 
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 313 

3.5. Mineral N at harvest and grain protein outputs 314 

The effects of the irrigation scenarios at Symmons Plains on grain yield, mineral N at harvest and grain 315 

protein percentage are shown in Fig. 10. This figure shows the cultivar Revenue sown in May, on a clay 316 

soil with initial soil water content of 50%, a sowing density of 200 plants/m2, initial mineral N of 50 317 

kg/ha and a top dressing N application rate of 120 kg N/ha under the rainfed, light irrigation at flowering 318 

and heavy irrigation scenarios. Two contrasting sowing N rate scenarios are presented (0 and 100 kg 319 

N/ha), in each scenario, the application of 100 kg N/ha returns higher grain yields although the 320 

variability increases with the rainfed and light irrigation at flowering scenarios (Fig 10a). The mean 321 

yields of each scenario with the application of 100 kg N/ha is 4.7 t/ha (rainfed), 6.1 t/ha (light irrigation 322 

at flowering) and 7.9 t/ha (heavy irrigation). Mineral N at harvest is a measure of the remaining soil N 323 

post-harvest (Fig 10b). The mineral N levels at harvest with 100 kg N/ha applied at sowing, for the 324 

rainfed scenario was 42 kg N/ha, light irrigation at flowering 30 kg N/ha and heavy irrigation 24 kg 325 

N/ha respectively (Fig. 10b). In the rainfed case, there are many years when the total N supply is 326 

exceeding crop demand due to high residual N at harvest, in contrast to both the light irrigation at 327 

flowering and heavy irrigation scenarios. Lower residual N at harvest indicates that the rate of N uptake 328 

with irrigated scenarios are higher, reflecting that available soil water in this case, is the principle factor 329 

in biomass production and N uptake rates. If the N supply for the crop remains relatively constant over 330 

the growing season, an increase in yield generally will result in a decrease in protein percentage content 331 

due to the dilution of N by larger biomass production (Harrison et al., 2011). This effect is illustrated 332 

in Fig. 11c, where a larger grain protein percentage is observed with the rainfed scenarios with 100 kg 333 

N/ha fertiliser, which have a grain protein of 15.3% (low grain yield), in contrast to the irrigated 334 

scenarios with grain protein percentages of 14.2% (light irrigation at flowering ) and 11.8% (heavy 335 

irrigation, higher grain yield). A similar trend is also evident with the scenarios of zero N applied, where 336 

grain protein percentage decreases with increased irrigation applications. Physiological and economic 337 

effects of N can also be examined on the ARM Online site via NitrogenARM, although this facility 338 

does not include the Tasmanian sites developed here.          339 

 340 
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 341 

Fig. 10. Simulated wheat grain yield (t/ha) (a) mineral N at harvest (kg/ha) (b) box plots (5th, 25th, 50th, 342 

75th and 95th percentile) and grain protein (%), probability of exceedance (c) May sowing, Revenue 343 
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cultivar, clay soil, rainfed, light irrigation at flowering and heavy irrigation for the site of Symmons 344 

Plains. 345 

 346 

3.6. Gross margin and ENSO effects  347 

For the site of Sassafras, after an initial analysis of grain yield, two further demonstrations of CropARM 348 

capability are shown here, a gross margin analysis and a medium term forecast using the Southern 349 

Oscillation Index (SOI) (Ropelewski et al., 1987). This figure shows the cultivar Tennant sown in June, 350 

on a red Ferrosol. The initial soil water content of 25%, with a sowing density of 250 plants/m2, initial 351 

mineral N of 10 kg/ha, sowing N of 100 kg N/ha and a top dressing N application rate of 120 kg N/ha 352 

(Fig. 11a,b). The rainfed scenario and three irrigation scenarios were selected, light at flowering, heavy, 353 

and heavy at flowering. The simulated grain yield results (Fig. 11a) show that larger grain yields were 354 

achieved with the heavy irrigation throughout and heavy irrigation at flowering scenarios in contrast to 355 

the rainfed and light irrigation at flowering scenarios. In applying heavy irrigation the grain yields range 356 

from 5 to 20% greater than the other simulated scenarios (Fig. 11a). The gross margin analysis however, 357 

indicates that the highest crop margins are achieved with the heavy irrigation at flowering scenario, 358 

while the gross margins for the rainfed, light irrigation at flowering and heavy irrigation are similar, the 359 

variability of gross margins for heavy irrigation is reduced in contrast to the rainfed and light irrigation 360 

at flowering scenarios (Fig. 11b). A caveat with gross margins is that results heavily depend on input 361 

values, so users are urged to explore the full range of outcomes with diverse variation in input values. 362 

 363 
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Fig. 11. Simulated wheat grain yield (t/ha) (a) and gross margin ($/ha) (b) June sowing, Revenue 365 

cultivar, Ferrosol soil, rainfed, light irrigation at flowering, heavy irrigation and heavy irrigation at 366 

flowering, box plots (5th, 25th, 50th, 75th and 95th percentile) at Sassafras.   367 

 368 

The Southern Oscillation Index (SOI, Ropelewski et al., 1987) demonstration (Fig. 12) has been 369 

undertaken with the rainfed and heavy irrigation at flowering scenarios as described above. All five 370 

phases of the SOI (negative, positive, rapidly falling, rapidly rising and neutral) were selected for two 371 

months before sowing (June sowing, SOI phases in April and May), the simulated results for the SOI 372 

phases are presented as an impact on the gross margins with each of the phases (Fig. 12). The simulated 373 

scenarios indicate that while generally the mean gross margins are similar between rainfed and heavy 374 

irrigation at flowering under each SOI phase, the gross margin variability is notably less with the 375 

application of irrigation water (except for the negative phase), due to costs associated with irrigation 376 

infrastructure and water. In comparing water use with estimated gross margin from CropARM, users 377 

can quickly gain an appreciation of which SOI phase will yield the most, and have the greatest grain 378 

WUE. Alternatively, users may wish to calculate $/ha of grain accounting for the price of water applied.  379 

  380 

Fig. 12. Simulated gross margin ($/ha) from the five phases of the SOI during April and May prior to 381 

sowing in June for the rainfed and heavy irrigation at flowering scenarios, box plots (5th, 25th, 50th, 75th 382 

and 95th percentile) at Sassafras.   383 
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4. Discussion 385 

The purpose of this study was firstly to parameterise wheat crop production in APSIM for ten locations 386 

within Tasmania, and secondly to simulate multiple wheat crop production scenarios for each location, 387 

and incorporate the parameterised files into CropARM. Prior to this work being undertaken no 388 

CropARM data were available for Tasmania. Additionally, no sites currently available in CropARM 389 

allowed users to compare rainfed and irrigated crop yields, which will likely form the basis of decisions 390 

made by many Tasmanian farmers regarding whether to sow grain crops and/or to apply irrigation water 391 

within the growing season. The new CropARM outputs allow users to contrast relative differences in 392 

grain yield caused by management decisions, soil type and genotypic differences in multiple regions. 393 

 394 

To parameterise APSIM for use in developing simulation scenarios to populate CropARM, we used 395 

observed wheat field data from ten sites (Acuna et al., 2015). The model adequately simulated mean 396 

annual grain yields attained at the ten sites with an acceptable degree of confidence under rainfed and 397 

irrigated conditions. Clearly, there will always be some difference between modelled and measured 398 

values, since simulations can differ from actual data due to several reasons (Moellar et al., 2007; 399 

Mohanty et al., 2012; Zhao et al., 2014). Variations in results can occur due to factors such as sampling 400 

and measurement error, and yields can vary markedly across paddocks due to spatial variability in 401 

rainfall, pests and diseases and soil heterogeneity, all of which are not accounted for by the model. Prior 402 

parameterisation of APSIM has also shown a general over-prediction in grain yields (Moellar et al., 403 

2007; Mohanty et al., 2012; Zhao et al., 2014; Gaydon et al., 2017), similar to results shown here (Table 404 

4). However, the validity of a biophysical model is not solely reliant on value performance measures, 405 

but more so whether the inevitable difference between the simulated and observed values are acceptable 406 

(Meinke and Stone, 2005). Gaydon et al., (2017) state that in reality it is unrealistic to expect modelled 407 

results to be perfectly the same as the mean of observed values, due primarily to the natural variance 408 

measured in observed data, and this is also true when modelling any other biological data. We conclude 409 

that the general accuracy and precision of the APSIM model simulations fell within acceptable ranges 410 

while factoring in the natural variability of observed field data (Asseng et al., 1998; Pembleton et al., 411 
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2013; Ahmed et al., 2016; Gaydon et al., 2017), demonstrating the ability of the model to simulate mean 412 

grain yields at each site, across the various soil types and climatic environments. 413 

 414 

Agricultural decision support tools equip users with a rapid and cost effective means of contrasting 415 

multiple scenarios to gauge the influence of different management strategies, on farm production and 416 

profitability (Nelson et al., 2002; Hochman and Carberry, 2011; Taechatanasat and Armstrong, 2014). 417 

Decision support tools also provide means of improving methods with which producers manage their 418 

enterprises (Hayman, 2004). CropARM was designed to provide producers, crop management advisers, 419 

and other users with access to the latest technology in cropping systems modelling and seasonal climate 420 

forecasting (Nelson et al., 2002; Pembleton and Cox, 2017). The climate across south-eastern Australia 421 

is highly variable and grain producers are required to make critical management decisions prior to, and 422 

during the cropping season. CropARM assists in allowing the exploration of empirical based simulation 423 

scenarios which can be used to support risk management in cropping systems via time series, 424 

probability, and diagnostic analyses. CropARM enables producers and advisors to compare and contrast 425 

different management options, either individually, or in combination.  426 

 427 

The advantages CropARM has over similar model-based DS tools such as Yield Prophet is that it is 428 

freely available online, the climate data is also regularly updated, and CropARM has a wide range of 429 

outputs for users to analyse and explore the potential range of results for the forthcoming season. Similar 430 

to CropARM, Yield Prophet (Hochman et al., 2009) acts as an interface to APSIM incorporating soil 431 

test results, growing season rainfall, crop management and historic climate data to provide accurate 432 

assessments of seasonal yield potential. Yield Prophet Lite (freely available online) was launched to 433 

give new users unfamiliar with digital agriculture tools the ability to trial benefits of the DS tool. Yield 434 

Prophet Lite contains a simplified feature set allowing farmers to predict the probability of yields for a 435 

variety of common crops. In contrast to Yield prophet Lite, Yield Prophet requires a subscription fee 436 

and greater user input (e.g. soil test results, accurate growing seasonal rainfall) to ensure reliable 437 

seasonal yield potential. CropARM differs from yield Prophet and Yield Prophet Lite in providing 438 

results over the long-term (115 year median and ranges), whereas the other DS tools only provide 439 
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estimates of the behaviour of the crop in the current growing season. CropARM also allows users more 440 

access to compare alternative management scenarios prior to sowing, but is not specific to a given farm 441 

in the way that Yield Prophet and Yield Prophet Lite are. CropARM also calculates over 20 different 442 

outputs, including yield, biomass at flowering and harvest, water-use efficiency, the range of potential 443 

rainfall received from planting to critical crop stages such as flowering, days to flowering, leaf area 444 

index, and effect of temperatures at critical stages.  445 

 446 

The examples of CropARM outputs presented in this study clearly demonstrate the advantages of the 447 

DS tool for growers, consultants and other agricultural specialists by providing insights into the effects 448 

of variable input options. For example, users wanting an estimate of different sowing dates, cultivar 449 

selection, and applied N at Campbell Town can determine that the timing of sowing is having a 450 

significant effect on grain yield. It was shown that under rainfed conditions, earlier sowing in either 451 

April or May resulted in greater grain yields in contrast to sowing in June or July. These results reiterate 452 

an important aspect of sowing time in winter cereals in determining the critical phase of crop 453 

development and the environmental conditions under which the crop grows during this period (Acuna 454 

et al., 2011; Lou et al., 2011). Sowing later increases the likelihood that high temperatures can induce 455 

heat stress around anthesis and during grain fill (Acuna et al., 2011) impacting final grain yields 456 

(Calderini et al., 1999; Barlow et al., 2015), as was evident at Campbell Town (Fig. 9).  457 

 458 

The CropARM scenario outputs presented also provide insights concerning the impacts of variable N 459 

input options. The efficient use of N is considered crucial to wheat production and quality (Evans et al., 460 

2001; Brill et al., 2012), where within a given season N rates and timing of application are major tactical 461 

tools employed for efficient N management (McDonald, 1992; Fowler, 2003). Applying N at sowing 462 

commonly facilitates greater crop biomass and subsequent grain yield response in comparison to later 463 

application, such as at anthesis, which has little influence on grain yield, but can drive a significant 464 

response in grain protein (Brill et al., 2012). This is exemplified at Symmons Plains where a user can 465 

quickly determine that the application of 100 kg N/ha returns higher grain yields and less annual 466 

variability in contrast to applying no nitrogen (Fig. 10a). Ideally the crop N supply should be such that 467 
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the mineralisation of soil organic matter and crop residues be synchronised with the crop demand 468 

(Angus 2001). If the N supply for the crop remains relatively constant (as is the case in CropARM after 469 

GS46), an increase in yield generally results in a decrease in grain protein content due to the dilution of 470 

N by larger biomass production (Angus, 2001; Fowler, 2003). This was evident at Symmons Plains (Fig 471 

10c), where greater grain yields were negatively correlated with grain protein. 472 

 473 

The economic analysis is computed post APSIM modelling and primarily relies on user inputs, where 474 

an estimate of the gross returns less the associated variable input costs is demonstrated at Sassafras 475 

(Figs. 11 and 12). Economic analyses may be used to apply a ‘marginal analysis’ which is concerned 476 

with how the addition of another unit of the variable input, such as N or irrigation water, will change 477 

the profitability of the business. Although unknown future crop, fertiliser and irrigation water prices 478 

can be more relevant to longer-term decision making where the benefits can accrue over many seasons. 479 

As part of the economic analysis, users are required to provide information specific to their own 480 

circumstances, such as soil fertility (starting soil N), sowing date, cultivar, and available soil moisture 481 

at time of sowing. Users can define potential yields estimates using a mass balance approach, where for 482 

example with irrigation application rates at Sassafras, this involves projecting the water limited (rainfed) 483 

achievable or target yield and estimating irrigation water required to increase the yield and thus gross 484 

margin. For Sassafras, a gross margin analysis was undertaken with the rainfed scenario and three 485 

irrigation scenarios of light at flowering, heavy at flowering and heavy irrigation. While the simulated 486 

grain yields were greater with the heavy irrigation and heavy irrigation at flowering, the gross margin 487 

analysis indicated that greater crop margins were achieved with the heavy irrigation at flowering 488 

scenario because the additional cost of irrigation water over the growing season negated the additional 489 

grain yield. Conversely, irrigating just at flowering indicates the highest cost-use efficiency of irrigation 490 

water. It may be somewhat counterintuitive that higher gross margins are achieved with less irrigation 491 

at Sassafras (Fig. 11). This illustrates another advantage of CropARM, where producers could rapidly 492 

estimate different irrigation levels and gross margins over a typical season at their location. 493 

 494 
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Decision support tools such as CropARM encourage producers to be more tactical through improved 495 

management decisions by providing insights into the effects of variable input options. Prior to this 496 

study, the DS tools only contained data from mainland Australia and excluded Tasmania (the southern-497 

most state of the continent). Further, agronomic information for mainland sites only contains 498 

simulations of rainfed crops, whereas the Tasmanian simulations incorporate both rainfed and irrigated 499 

wheat. The development of CropARM for Tasmanian grain producers assists in the ability to project 500 

the effects of agronomic management on grain yields, including sowing time, soil type, fertiliser rates 501 

and cultivar selection with the ability to characterise the influence of irrigation on grain yield and gross 502 

margins. The addition of ten sites across Tasmania within CropARM specifically enables local grain 503 

producers to manage production and economic risks with greater flexibility structured for their specific 504 

circumstances, allowing producers to continually improve their farming systems. The development of 505 

CropARM will also assist independent service providers and policy-makers to predict the impact that 506 

different management techniques have on crop production. 507 

 508 

5. Conclusions 509 

This study collated observed field data from ten sites across the Tasmanian commercial wheat 510 

production regions over the period of 1983 to 2010. APSIM was parameterised with the field 511 

observations for use in scenario development within CropARM. Prior to this work, there was no data 512 

available for Tasmanian wheat growers within CropARM or in other DS tools available for the State. 513 

We demonstrated reliable initial model parameterisation and validation, with simulated grain yields that 514 

were close to observed values from the ten sites in Tasmania. The new CropARM outputs will allow 515 

users to contrast relative differences in grain yield caused by management or genotypic differences in 516 

multiple regions. The development of CropARM incorporating multiple scenarios enables agronomic 517 

scenario analysis for wheat producers across the State. This will allow crop producers and advisors to 518 

examine the full range of possible outcomes across 115 years of historic climate data regarding the 519 

financial effect of different levels of inputs, such as irrigation and fertiliser, or soil resources such as 520 

water and nitrogen. Further, CropARM assists in management decisions and supporting users to make 521 

data-based decisions, allowing continual improvement in their farming systems. Future development of 522 



26 
 

CropARM and other DS tools capable for use in southern Australia will also help raise profitability and 523 

efficiency of Tasmanian farming.   524 
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