University of Tasmania
Browse

File(s) not publicly available

Airway hyperresponsiveness is associated with activated CD4+ T cells in the airways

journal contribution
posted on 2023-05-17, 22:54 authored by Graeme ZoskyGraeme Zosky, Larcombe, AN, White, OJ, Burchell, JT, von Garnier, C, Holt, PG, Turner, DJ, Wikstrom, ME, Sly, PD, Stumbles, PA
It is widely accepted that atopic asthma depends on an allergic response in the airway, yet the immune mechanisms that underlie the development of airway hyperresponsiveness (AHR) are poorly understood. Mouse models of asthma have been developed to study the pathobiology of this disease, but there is considerable strain variation in the induction of allergic disease and AHR. The aim of this study was to compare the development of AHR in BALB/c, 129/Sv, and C57BL/6 mice after sensitization and challenge with ovalbumin (OVA). AHR to methacholine was measured using a modification of the forced oscillation technique in anesthetized, tracheostomized mice to distinguish between airway and parenchymal responses. Whereas all strains showed signs of allergic sensitization, BALB/c was the only strain to develop AHR, which was associated with the highest number of activated (CD69(+)) CD4(+) T cells in the airway wall and the highest levels of circulating OVA-specific IgG(1). AHR did not correlate with total or antigen-specific IgE. We assessed the relative contribution of CD4(+) T cells and specific IgG(1) to the development of AHR in BALB/c mice using adoptive transfer of OVA-specific CD4(+) T cells from DO11.10 mice. AHR developed in these mice in a progressive fashion following multiple OVA challenges. There was no evidence that antigen-specific antibody had a synergistic effect in this model, and we concluded that the number of antigen-specific T cells activated and recruited to the airway wall was crucial for development of AHR.

History

Publication title

American Journal of Physiology: Lung Cellular and Molecular Physiology

Volume

297

Pagination

L373-9

ISSN

1040-0605

Department/School

Tasmanian School of Medicine

Publisher

Amer Physiological Soc

Place of publication

9650 Rockville Pike, Bethesda, USA, Md, 20814

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC