University of Tasmania
Browse

File(s) under permanent embargo

Alkyl linker effects on the coordination topology of ditopic di(2-pyridylmethyl)amine carboxylate ligands with ZnII and CuII: polymers vs. macrocycles

journal contribution
posted on 2023-05-18, 12:28 authored by Rodpun, K, Blackman, AG, Michael GardinerMichael Gardiner, Tan, EW, Meledandri, CJ, Lucas, NT
A series of ditopic ω-di(2-pyridylmethyl)amine carboxylic acid ligands incorporating a range of n-alkyl linkers (CnCOOH, n = 3–5, 7, 10 and 11) have been synthesised. Solution phase studies showed a 1 : 1 coordination stoichiometry between the ligands and M(ClO4)2·6H2O (M = ZnII or CuII) in all cases. The ZnII and CuII complexes were subsequently crystallised by liquid–liquid diffusion and the solid-state structures investigated by X-ray crystallography. The crystal structures obtained are entirely consistent with the 1 : 1 metal–ligand ratio of the solution-phase adducts. However, the coordination geometries and complex topologies are dependent on the alkyl chain length of the ligand CnCOOH. The ZnII and CuII complexes of the short alkyl chain ligands (n ≤ 5) exhibit 1D coordination polymeric structures with somewhat different conformations for {[Zn(C3COO)(H2O)](ClO4)·3.5H2O}n (1), {[Zn(C4COO)(H2O)]4(ClO4)4·1.5H2O}n (2), {[Zn(C5COO)(H2O)](ClO4)}n (3), {[Cu(C3COO)](ClO4)·MeOH}n (4), {[Cu(C4COO)(H2O)]2(ClO4)2·2H2O}n (5) and {[Cu(C5COO)(H2O)](ClO4)·2H2O}n (6). In contrast, the ligands with longer alkyl chains (n ≥ 7) participate in Zn2L2 metallomacrocyclic structures {[Zn(C7COO)(H2O)](ClO4)}2 (7), [Zn2(C10COO)2(H2O)2](ClO4)2·2H2O·MeOH (8) and {[Zn2(C11COO)2(H2O)2][Zn2(C11COO)2](ClO4)4·H2O}n (9). The formation of metallomacrocycles instead of the 1D coordination polymers is a persistent trend and, with identical crystal growth conditions and a non-coordinating anion employed, appears to be an effect of the longer alkyl chain.

History

Publication title

CrystEngComm

Volume

17

Issue

15

Pagination

2974-2988

ISSN

1466-8033

Department/School

School of Natural Sciences

Publisher

Royal Soc Chemistry

Place of publication

Thomas Graham House, Science Park, Milton Rd, Cambridge, England, Cambs, Cb4 0Wf

Rights statement

Copyright 2015 The Royal Society of Chemistry

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC