University of Tasmania
Browse

File(s) under permanent embargo

An Assessment of the Effect of Synthetic and Doping Conditions on the Processability and Conductivity of Poly(3,4-ethylenedioxythiophene)/Poly(styrene sulfonic acid)

journal contribution
posted on 2023-05-19, 02:35 authored by Diah, AWM, Joselito Quirino, Belcher, W, Holdsworth, CI
Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) dispersions are synthesized via conventional oxidative polymerization under various synthetic (reaction times and formulations) and doping conditions (in situ and postpolymerization) with the introduction of dialysis as an additional purification step. Conductivities of films produced from these synthesized dispersions are one to three orders of magnitude higher than the equivalent commercial PEDOT/PSS reference film. In situ doped PEDOT/PSS dispersions give films that are more conductive than those doped postpolymerization. Optimum conductivity of 5.2 ± 0.7 S cm-1 is obtained from PEDOT/PSS dispersions (1:2.5 EDOT:PSS mass ratio) synthesized for 12 h with doping efficiency of 73%. Under these synthetic conditions, the film most likely has the optimal microstructure, i.e., optimal PEDOT chain length and ideal distribution and balance of PEDOT/PSS segments and free PSS chains, favoring charge transport and processability. Capillary electrophoresis is presented here as a novel method for measuring free and doped PSS in PEDOT/PSS dispersions.

Funding

Australian Research Council

History

Publication title

Macromolecular Chemistry and Physics

Volume

217

Issue

17

Pagination

1907-1916

ISSN

1022-1352

Department/School

School of Natural Sciences

Publisher

Wiley - V C H Verlag GmbH & Co. KGaA

Place of publication

Germany

Rights statement

Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC