University of Tasmania
Browse

Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets

Download (914.17 kB)
journal contribution
posted on 2023-05-19, 04:22 authored by Emma Cavan, Le Moigne, FAC, Poulton, AJ, Tarling, GA, Ward, P, Daniels, CJ, Fragoso, GM, Sanders, RJ
The Southern Ocean (SO) is an important CO2 reservoir, some of which enters via the production, sinking, and remineralization of organic matter. Recent work suggests that the fraction of production that sinks is inversely related to production in the SO, a suggestion that we confirm from 20 stations in the Scotia Sea. The efficiency with which exported material is transferred to depth (transfer efficiency) is believed to be low in high-latitude systems. However, our estimates of transfer efficiency are bimodal, with stations in the seasonal ice zone showing intense losses and others displaying increases in flux with depth. Zooplankton fecal pellets dominated the organic carbon flux and at stations with transfer efficiency >100% fecal pellets were brown, indicative of fresh phytodetritus. We suggest that active flux mediated by zooplankton vertical migration and the presence of sea ice regulates the transfer of organic carbon into the oceans interior in the Southern Ocean.

History

Publication title

Geophysical Research Letters

Volume

42

Pagination

821-830

ISSN

0094-8276

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

Copyright 2015 American Geophysical Union.Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Measurement and assessment of freshwater quality (incl. physical and chemical conditions of water)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC