University of Tasmania
Browse

File(s) under permanent embargo

Bayesian analysis of input uncertainty in hydrological modeling: 2. Application

journal contribution
posted on 2023-05-17, 19:29 authored by Kavetski, D, Kuczera, G, Franks, SW
The Bayesian total error analysis (BATEA) methodology directly addresses both input and output errors in hydrological modeling, requiring the modeler to make explicit, rather than implicit, assumptions about the likely extent of data uncertainty. This study considers a BATEA assessment of two North American catchments: (1) French Broad River and (2) Potomac basins. It assesses the performance of the conceptual Variable Infiltration Capacity (VIC) model with and without accounting for input (precipitation) uncertainty. The results show the considerable effects of precipitation errors on the predicted hydrographs (especially the prediction limits) and on the calibrated parameters. In addition, the performance of BATEA in the presence of severe model errors is analyzed. While BATEA allows a very direct treatment of input uncertainty and yields some limited insight into model errors, it requires the specification of valid error models, which are currently poorly understood and require further work. Moreover, it leads to computationally challenging highly dimensional problems. For some types of models, including the VIC implemented using robust numerical methods, the computational cost of BATEA can be reduced using Newton-type methods.

History

Publication title

Water Resources Research

Volume

42

Article number

W03408

Number

W03408

Pagination

1-10

ISSN

1944-7973

Department/School

School of Engineering

Publisher

AGU

Place of publication

USA

Rights statement

Copyright 2006 by the American Geophysical Union.

Repository Status

  • Restricted

Socio-economic Objectives

Other environmental management not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC