University of Tasmania
Browse
- No file added yet -

Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition

Download (2.11 MB)
journal contribution
posted on 2023-05-18, 01:40 authored by Peter StruttonPeter Strutton, Coles, VJ, Hood, RR, Matear, RJ, McPhaden, MJ, Helen PhillipsHelen Phillips
In this paper we examine time-series measurements of near-surface chlorophyll concentration from a mooring that was deployed at 80.5°E on the equator in the Indian Ocean in 2010. These data reveal at least six striking spikes in chlorophyll from October through December, at approximately 2-week intervals, that coincide with the development of the fall Wyrtki jets during the transition between the summer and winter monsoons. Concurrent meteorological and in situ physical measurements from the mooring reveal that the chlorophyll pulses are associated with the intensification of eastward winds at the surface and eastward currents in the mixed layer. These observations are inconsistent with upwelling dynamics as they occur in the Atlantic and Pacific oceans, since eastward winds that force Wyrtki jet intensification should drive downwelling. The chlorophyll spikes could be explained by two alternative mechanisms: (1) turbulent entrainment of nutrients and/or chlorophyll from across the base of the mixed layer by wind stirring or Wyrtki jet-induced shear instability or (2) enhanced southward advection of high chlorophyll concentrations into the equatorial zone. The first mechanism is supported by the phasing and amplitude of the relationship between wind stress and chlorophyll, which suggests that the chlorophyll spikes are the result of turbulent entrainment driven by synoptic zonal wind events. The second mechanism is supported by the observation of eastward flows over the Chagos–Laccadive Ridge, generating high chlorophyll to the north of the equator. Occasional southward advection can then produce the chlorophyll spikes that are observed in the mooring record. Wind-forced biweekly mixed Rossby gravity waves are a ubiquitous feature of the ocean circulation in this region, and we examine the possibility that they may play a role in chlorophyll variability. Statistical analyses and results from the OFAM3 (Ocean Forecasting Australia Model, version 3) eddy-resolving model provide support for both mechanisms. However, the model does not reproduce the observed spikes in chlorophyll. Climatological satellite chlorophyll data show that the elevated chlorophyll concentrations in this region are consistently observed year after year and so are reflective of recurring large-scale wind- and circulation-induced productivity enhancement in the central equatorial Indian Ocean.

Funding

Australian Research Council

History

Publication title

Biogeosciences

Volume

12

Issue

8

Pagination

2367-2382

ISSN

1726-4170

Department/School

Institute for Marine and Antarctic Studies

Publisher

Copernicus GmbH

Place of publication

Germany

Rights statement

Copyright 2014 The Authors-This article has been distributed under the terms of the Creative Commons Attribution License. (CC BY 3.0 AU)

Repository Status

  • Open

Socio-economic Objectives

Climate variability (excl. social impacts)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC