Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3- acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea.
History
Publication title
Plant Physiology
Volume
159
Pagination
1055-1063
ISSN
0032-0889
Department/School
School of Natural Sciences
Publisher
Amer Soc Plant Biologists
Place of publication
15501 Monona Drive, Rockville, USA, Md, 20855
Rights statement
Copyright 2012 American Society of Plant Biologists