University Of Tasmania
Symons_and_Reid_2004_(brassinosteroids_do_not_undergo_long-dist..).pdf (244.62 kB)
Download file

Brassinosteroids Do Not Undergo Long-Distance Transport in Pea. Implications for the Regulation of Endogenous Brassinosteriod Levels

Download (244.62 kB)
journal contribution
posted on 2023-05-16, 15:13 authored by Symons, GM, James ReidJames Reid
It is widely accepted that brassinosteroids (BRs) are important regulators of plant growth and development. However, in comparison to the other classical plant hormones, such as auxin, relatively little is known about BR transport and its potential role in the regulation of endogenous BR levels in plants. Here, we show that end-pathway BRs in pea (Pisum sativum) occur in a wide range of plant tissues, with the greatest accumulation of these substances generally occurring in the young, actively growing tissues, such as the apical bud and young internodes. However, despite the widespread distribution of BRs throughout the plant, we found no evidence of long-distance transport of these substances between different plant tissues. For instance, we show that the maintenance of steady-state BR levels in the stem does not depend on their transport from the apical bud or mature leaves. Similarly, reciprocal grafting between the wild type and the BR-deficient lkb mutants demonstrates that the maintenance of steady-state BR levels in whole shoots and roots does not depend on either basipetal or acropetal transport of BRs between these tissues. Together, with results from 3H-BR feeding studies, these results demonstrate that BRs do not undergo long-distance transport in pea. The widespread distribution of end-pathway BRs and the absence of long-distance BR transport between different plant tissues provide significant insight into the mechanisms that regulate BR homeostasis in plants.


Publication title

Plant Physiology










School of Natural Sciences



Place of publication


Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania