Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation
journal contribution
posted on 2023-05-18, 10:39authored byJianhong, Y, Dongsheng, J, Liu, PL-F, Andrew ChanAndrew Chan, Ren, W, Changqi, Z
In the practice of engineering, breaking wave is much more dangerous for the stability of composite breakwater built on porous seabed than non-breaking wave in offshore area. In previous investigations or design codes, the empirical formulations generally were adopted to estimate the wave impact acting on the lateral side of caisson. The interaction between breaking wave, seabed foundation and composite breakwater is not taken into consideration. In this study, adopting the integrated numerical model PORO-WSSI 2D developed by (Ye, 2012a) and (Jeng et al., 2013), the interaction mechanism between breaking wave, seabed foundation and composite breakwater is investigated numerically. In PORO-WSSI 2D,the Volume-Averaged Reynolds Averaged Navier–Stokes (VARANS) equations govern the wave motion and the porous flow in seabed foundation and in rubble mound; and the dynamic Biot's equations (known as “u-p” approximation) govern the dynamic behaviors of seabed foundation and composite breakwater under breaking wave loading. Numerical analysis indicates that the turbulent energy of breaking wave is significant, and the wave impact on caisson applied by breaking wave is much greater than non-breaking wave. The composite breakwater and its seabed foundation respond to the breaking wave loading intensively. The maximum horizontal vibration magnitude of the composite breakwater is up to 5 mm; the maximum liquefaction depth in the seabed in front of the composite breakwater reaches up to 1.2 to 1.6 m. The parametric study shows that the permeability and saturation of seabed, wave height are three dominant factors for the wave-induced liquefaction in seabed foundation.
History
Publication title
Coastal Engineering
Volume
85
Pagination
72-86
ISSN
0378-3839
Department/School
School of Engineering
Publisher
Elsevier Science Bv
Place of publication
Po Box 211, Amsterdam, Netherlands, 1000 Ae
Rights statement
Copyright 2013 Elsevier B.V.
Repository Status
Restricted
Socio-economic Objectives
Oceanic processes (excl. in the Antarctic and Southern Ocean)