University of Tasmania
Browse

File(s) under permanent embargo

Capturing embryonic development from metamorphosis: How did the terminal patterning signalling pathway of Drosophila evolve?

journal contribution
posted on 2023-05-20, 01:43 authored by Duncan, EJ, Johnson, TK, Whisstock, JC, Coral WarrCoral Warr, Dearden, PK
The Torso receptor tyrosine kinase has two crucial roles in Drosophila melanogaster development. One is in the control of insect moulting, which is regulated by the neuropeptide hormone PTTH (prothoracicotropic hormone). PTTH activates ERK signalling via Torso in the prothoracic gland to stimulate ecdysone secretion. Torso also has a role in control of one of the earliest events in embryogenesis in Drosophila; patterning of the embryonic termini. Here Torso is activated by a different, but related, peptide called Trunk. During terminal patterning another protein, Torso-like, has a key role in mediating activation of Torso by Trunk. Torso-like is also expressed in the prothoracic gland and null-mutants have defective developmental timing in Drosophila. This function, however, has been recently shown to be independent of Torso and PTTH. We refer to these proteins, Trunk, PTTH, Torso and Torso-like, as the Torso-activation module. Outside Drosophila we see that the genes encoding the Torso-activation module have a complex phylogenetic history, with different origins and multiple losses of components of this signalling pathway during arthropod evolution. This, together with expression and functional data in a range of insects, leads us to propose that the terminal patterning pathway in Drosophila and Tribolium arose through co-option of PTTH/Trunk and Torso, which has a role in developmental timing, into a new context, and that Torso-like was recruited specifically in the ovary to modulate the specificity of this pathway. © 2014 Elsevier Inc.

History

Publication title

Current Opinion in Insect Science

Pagination

45-51

ISSN

2214-5745

Department/School

Tasmanian School of Medicine

Publisher

Elsevier BV

Place of publication

Netherlands

Rights statement

Copyright 2014 Elsevier Inc. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC