University Of Tasmania

File(s) not publicly available

Cell cycle dynamics of NG2 cells in the postnatal and ageing brain

journal contribution
posted on 2023-05-17, 08:36 authored by Psachoulia, K, Jamen, F, Kaylene YoungKaylene Young, Richardson, WD
Oligodendrocyte precursors (OLPs or 'NG2 cells') are abundant in the adult mouse brain, where they continue to proliferate and generate new myelinating oligodendrocytes. By cumulative BrdU labelling, we estimated the cell cycle time T(C) and the proportion of NG2 cells that is actively cycling (the growth fraction) at similar to postnatal day 6 (P6), P60, P240 and P540. In the corpus callosum, TC increased from <2 days at P6 to similar to 9 days at P60 to similar to 70 days at P240 and P540. In the cortex, TC increased from similar to 2 days to >150 days over the same period. The growth fraction remained relatively invariant at similar to 50% in both cortex and corpus callosum - that is, similar numbers of mitotically active and inactive NG2 cells co-exist at all ages. Our data imply that a stable population of quiescent NG2 cells appears before the end of the first postnatal week and persists throughout life. The mitotically active population acts as a source of new oligodendrocytes during adulthood, while the biological significance of the quiescent population remains to be determined. We found that the mitotic status of adult NG2 cells is unrelated to their developmental site of origin in the ventral or dorsal telencephalon. We also report that new oligodendrocytes continue to be formed at a slow rate from NG2 cells even after P240 (8 months of age).


Publication title

Neuron Glia Biology










Menzies Institute for Medical Research


Cambridge Univ Press

Place of publication

United Kingdom

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania