In sheep, central leptin infusion reduces food intake and increases energy expenditure in adipose tissue and skeletal muscle. The mechanisms for these peripheral effects of central leptin in sheep are not known but, on the basis of rodent studies, may involve AMPK. In mice, central leptin acutely increases both skeletal muscle AMPK activation and glucose uptake. Thus, to investigate whether these effects exist in higher-order mammals, ovariectomized Corriedale ewes (n = 4 per group) received a continuous lateral ventricular infusion (60 μl/h) of either leptin (50 μg/h) or artificial cerebrospinal fluid (aCSF; CON) for 8 days. Tritiated glucose (3-(3)H-glucose) was infused intravenously for calculation of whole body glucose turnover during both acute (6 h) and chronic (7-8 days) leptin/aCSF infusion. Muscle biopsies were also obtained. Leptin infusion reduced (P < 0.05) food intake and body weight, and it also increased plasma epinephrine concentration at 6 h and 7 days, suggesting increased sympathetic nerve activity. Despite this, and in contrast to rodent studies, central leptin infusion did not increase skeletal muscle AMPKα Thr(172) phosphorylation or ACCβ Ser(221) phosphorylation. Surprisingly, the glucose rate of appearance (glucose Ra) and rate of disappearance (glucose Rd) were reduced by both acute and chronic leptin infusion. Direct infusion of the AMPK activator 5-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) into the femoral artery increased skeletal muscle AMPK phosphorylation. In conclusion, although central leptin infusion in sheep caused the predicted reduction in food intake and increases plasma epinephrine concentration, it had no effect on AMPK activation in skeletal muscle and actually reduced glucose disposal. This suggests that there are species differences in the peripheral responses to central leptin infusion.
History
Publication title
American Journal of Physiology: Regulatory, Integrative and Comparative Physiology