University of Tasmania

File(s) under permanent embargo

Changes in distribution and frequency of fungi associated with a foliar disease complex of pyrethrum in Australia

journal contribution
posted on 2023-05-18, 12:36 authored by Hay, FS, Gent, DH, Stacey PilkingtonStacey Pilkington, Tamieka PearceTamieka Pearce, Jason ScottJason Scott, Pethybridge, SJ
In Australia, pyrethrum (Tanacetum cinerariifolium) is affected by a foliar disease complex that can substantially reduce green leaf area and yield. Historically, the most important foliar disease of pyrethrum in Australia has been ray blight, caused by Stagonosporopsis tanaceti, and other fungi generally of minor importance. Temporal fluctuations in the frequency of fungi associated with foliar disease were quantified in each of 83 fields in northern Tasmania, Australia, during 2012 and 2013. Sampling was conducted throughout winter (April to July), spring (August to September), and summer (November) representing different phenological stages. Microsphaeropsis tanaceti, the cause of tan spot, was the pathogen most prevalent and isolated at the highest frequency, irrespective of sampling period. The next most common species was S. tanaceti, whose isolation frequency was low in winter and increased in spring and summer. Known pathogens of pyrethrum, Alternaria tenuissima, Colletotrichum tanaceti, and Stemphylium botryosum were recovered sporadically and at low frequency. Two species of potential importance, Paraphoma chrysanthemicola and Itersonilia perplexans, were also found at low frequency. This finding suggests a substantial shift in the dominant pathogen associated with foliar disease, from S. tanaceti to M. tanaceti, and coincides with an increase in defoliation severity in winter, and control failures of the spring fungicide program. Factors associated with this finding were also investigated. Sensitivity of M. tanaceti and S. tanaceti populations to the fungicides boscalid and cyprodinil collected prior to and following disease control failures in the field were tested under in vitro conditions. A high proportion (60%) of the M. tanaceti isolates obtained from fields in which no response to the spring fungicide program was found were insensitive to 50 µg a.i./ml boscalid. This represented a 4.2-fold increase in the frequency of this phenotype within the M. tanaceti population over 2 years. No shifts in sensitivities to cyprodinil of M. tanaceti and S. tanaceti, or S. tanaceti to boscalid, were observed. Considering the increase in defoliation severity over winter, the benefits of applying fungicides in autumn, in addition to the commercial standard (spring only), were quantified in 14 individual field trials conducted in 2011 and 2012. Mixed-model analysis suggested fungicide application in autumn may improve pyrethrum growth during late winter and early spring, although effects on defoliation and yield were minimal. The increasing prevalence and isolation frequency of M. tanaceti and boscalid resistance within the population is of concern and highlights the urgent need for adoption of nonchemical methods for disease management in Australian pyrethrum fields.


Horticulture Innovation Australia


Publication title

Plant Disease










Tasmanian Institute of Agriculture (TIA)


Amer Phytopathological Soc

Place of publication

3340 Pilot Knob Road, St Paul, USA, Mn, 55121

Rights statement

© 2015 American Phytopathological Society

Repository Status

  • Restricted

Socio-economic Objectives

Horticultural crops not elsewhere classified

Usage metrics

    University Of Tasmania



    Ref. manager