University of Tasmania
Browse

Changes in sea floor productivity are crucial to understanding the impact of climate change in temperate coastal ecosystems according to a new size-based model

Download (2 MB)
Version 2 2025-01-22, 23:28
Version 1 2024-09-17, 00:20
journal contribution
posted on 2025-01-22, 23:28 authored by Asta AudzijonyteAsta Audzijonyte, Gustav W Delius, Richard Stuart-SmithRichard Stuart-Smith, Camilla Novaglio, Graham EdgarGraham Edgar, Neville BarrettNeville Barrett, Julia BlanchardJulia Blanchard
The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species' biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.

History

Sub-type

  • Article

Publication title

PLOS BIOLOGY

Medium

Electronic-eCollection

Volume

21

Issue

12

Article number

ARTN e3002392

Editors

M Loreau

Pagination

28

eISSN

1545-7885

ISSN

1544-9173

Department/School

Ecology and Biodiversity

Publisher

PUBLIC LIBRARY SCIENCE

Publication status

  • Published

Place of publication

United States

Event Venue

Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.

Rights statement

Copyright © 2023 Audzijonyteet al. This is an open access article distributed under the terms of the CreativeCommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

UN Sustainable Development Goals

7 Affordable and Clean Energy, 13 Climate Action