Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil
journal contribution
posted on 2023-05-17, 15:00authored byHayden, HL, Mele, PM, Bougoure, DS, Allan, CY, Norng, S, Piceno, YM, Brodie, EL, DeSantis, TZ, Andersen, GL, Williams, AL, Mark HovendenMark Hovenden
The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, + 550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0–5 cm and 5–10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P < 0.05). Fungal community diversity resulted in three groups based upon elevated [CO2], elevated [CO2] plus warming and ambient [CO2]. Overall bacterial community diversity was influenced primarily by depth. Specific bacterial taxa changed in richness and relative abundance in response to climate change factors when assessed by a high-resolution 16S rRNA microarray (Phylo- Chip). Operational taxonomic unit signal intensities increased under elevated [CO2] for both Firmicutes and Bacteroidetes, and increased under warming for Actinobacteria and Alphaproteobacteria. For the interaction of elevated [CO2] and warming there were 103 significant operational taxonomic units (P < 0.01) representing 15 phyla and 30 classes. The majority of these operational taxonomic units increased in abundance for elevated [CO2] plus warming plots, while abundance declined in warmed or elevated [CO2] plots. Bacterial abundance (16S rRNA gene copy number) was significantly different for the interaction of elevated [CO2] and depth (P < 0.05) with decreased abundance under elevated [CO2] at 5–10 cm, and for Firmicutes under elevated [CO2] (P < 0.05). Bacteria, archaea and fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response (‘+’ or ‘-’) under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change.
Funding
Australian Research Council
History
Publication title
Environmental Microbiology
Volume
14
Issue
12
Pagination
3081-3096
ISSN
1462-2912
Department/School
School of Natural Sciences
Publisher
Wiley-Blackwell Publishing Ltd
Place of publication
The Atrium, Chichester, West Sussex PO19 8SQ, UK
Rights statement
Copyright 2012 Society for Applied Microbiology and Blackwell Publishing Ltd