University of Tasmania
Browse

Characteristics of wind-generated near-inertial waves in the Southeast Indian Ocean

Download (6.71 MB)
journal contribution
posted on 2023-05-21, 08:49 authored by Ajitha Cyriac, Helen PhillipsHelen Phillips, Nathaniel BindoffNathaniel Bindoff, Feng, M

This study presents the characteristics and spatiotemporal structure of near-inertial waves and their interaction with Leeuwin Current eddies in the eastern south Indian Ocean as observed by Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. The floats sampled the upper ocean during July–October 2013 with a frequency of eight profiles per day down to 1200 m. Near-inertial waves (NIWs) are found to be the dominant signal in the frequency spectra. Complex demodulation is used to estimate the amplitude and phase of the NIWs from the velocity profiles. The NIW energy propagated from the base of the mixed layer downward into the ocean interior, following beam characteristics of linear wave theory. We visually identified a total of 15 near-inertial internal wave packets from the wave amplitudes and phases with a mean vertical wavelength of 89 ± 63 m, a mean horizontal wavelength of 69 ± 85 km, a mean horizontal group velocity of 3 ± 2 cm s−1, and a mean vertical group velocity of 9 ± 7 m day−1. A strong near-inertial packet with a kinetic energy of 20–30 J m−3 found propagating below 700 m suggests that the NIWs can contribute to deep ocean mixing. A blue shift of 10%–15% in the energy spectrum of the NIWs is observed in the upper 1200 m as the floats move toward the equator. The impacts of mesoscale eddies on the characteristics and propagation of the observed NIWs are also investigated. The elevated near-inertial shear variance in anticyclonic eddies suggests trapping of NIWs near the surface. Cyclonic eddies, in contrast, were associated with weak near-inertial shear variance in the upper 400 m.

Funding

National Science Foundation

History

Publication title

Journal of Physical Oceanography

Volume

52

Issue

4

Pagination

557-578

ISSN

0022-3670

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

2022 American Meteorological Society.

Repository Status

  • Restricted

Socio-economic Objectives

Oceanic processes (excl. in the Antarctic and Southern Ocean)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC