University of Tasmania
Article_Cole_2012_Chem_abund_LMC_glob.pdf (1.41 MB)

Chemical abundances in the old LMC globular cluster Hodge 11

Download (1.41 MB)
journal contribution
posted on 2023-05-17, 15:55 authored by Mateluna, R, Geisler, D, Villanova, S, Carraro, G, Grocholski, A, Sarajedini, A, Andrew ColeAndrew Cole, Smith, V

Context: The study of globular clusters is one of the most powerful ways to learn about a galaxy's chemical evolution and star formation history. They preserve a record of chemical abundances at the time of their formation and are relatively easy to age date. The most detailed knowledge of the chemistry of a star is given by high resolution spectroscopy, which provides accurate abundances for a wide variety of elements, yielding a wealth of information on the various processes involved in the cluster's chemical evolution.

Aims: We studied red giant branch (RGB) stars in an old, metal-poor globular cluster of the Large Magellanic Cloud (LMC), Hodge 11 (H11), in order to measure as many elements as possible. The goal is to compare its chemical trends to those in the Milky Way halo and dwarf spheroidal galaxies in order to help understand the formation history of the LMC and our own Galaxy.

Methods: We have obtained high resolution VLT/FLAMES spectra of eight RGB stars in H11. The spectral range allowed us to measure a variety of elements, including Fe, Mg, Ca, Ti, Si, Na, O, Ni, Cr, Sc, Mn, Co, Zn, Ba, La, Eu and Y. Results. We derived a mean [Fe/H] = -2.00 ± 0.04, in the middle of previous determinations. We found low [α/Fe] abundances for our targets, more comparable to values found in dwarf spheroidal galaxies than in the Galactic halo, suggesting that if H11 is representative of its ancient populations then the LMC does not represent a good halo building block. Our [Ca/Fe] value is about 0.3 dex less than that of halo stars used to calibrate the Ca IR triplet technique for deriving metallicity. A hint of a Na abundance spread is observed. Its stars lie at the extreme high O, low Na end of the Na:O anti-correlation displayed by Galactic and LMC globular clusters.


Publication title

Astronomy and Astrophysics



Article number









School of Natural Sciences


E D P Sciences

Place of publication

7, Ave Du Hoggar, Parc D Activites Courtaboeuf, Bp 112, Les Ulis Cedexa, France, F-91944

Rights statement

Copyright 2012 ESO

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania


    Ref. manager