MHC-I and MHC-II molecules are critical components of antigen presentation and T cell immunity to pathogens and cancer. The two monoclonal transmissible devil facial tumours (DFT1, DFT2) exploit MHC-I pathways to overcome immunological anti-tumour and allogeneic barriers. This exploitation underpins the ongoing transmission of DFT cells across the wild Tasmanian devil population. We have previously shown that the overexpression of NLRC5 in DFT1 and DFT2 cells can regulate components of the MHC-I pathway but not MHC-II, establishing the stable upregulation of MHC-I on the cell surface. As MHC-II molecules are crucial for CD4+ T cell activation, MHC-II expression in tumour cells is beginning to gain traction in the field of immunotherapy and cancer vaccines. The overexpression of Class II transactivator in transfected DFT1 and DFT2 cells induced the transcription of several genes of the MHC-I and MHC-II pathways. This was further supported by the upregulation of MHC-I protein on DFT1 and DFT2 cells, but interestingly MHC-II protein was upregulated only in DFT1 cells. This new insight into the regulation of MHC-I and MHC-II pathways in cells that naturally overcome allogeneic barriers can inform vaccine, immunotherapy and tissue transplant strategies for human and veterinary medicine.