Computational study of bridge splitting, aryl halide oxidative addition to PtII, and reductive elimination from PtIV: route to pincer-PtII reagents with chemical and biological applications
<p>Density functional theory computation indicates that bridge splitting of [Pt<sup>II</sup>R<sub>2</sub>(μ-SEt<sub>2</sub>)]<sub>2</sub> proceeds by partial dissociation to form R<sub>2</sub>Pt<sup>a</sup>(μ-SEt<sub>2</sub>)Pt<sup>b</sup>R<sub>2</sub>(SEt<sub>2</sub>), followed by coordination of N-donor bromoarenes (L-Br) at Pt<sup>a</sup> leading to release of Pt<sup>b</sup>R<sub>2</sub>(SEt<sub>2</sub>), which reacts with a second molecule of L-Br, providing two molecules of PtR<sub>2</sub>(SEt<sub>2</sub>)(L-Br-<i>N</i>). For R=4-tolyl (Tol), L-Br=2,6-(pzCH<sub>2</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Br (pz=pyrazol-1-yl) and 2,6-(Me<sub>2</sub>NCH<sub>2</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Br, subsequent oxidative addition assisted by intramolecular N-donor coordination via Pt<sup>II</sup>Tol<sub>2</sub>(L-<i>N,Br</i>) and reductive elimination from Pt<sup>IV</sup> intermediates gives <i>mer</i>-Pt<sup>II</sup>(L-<i>N,C,N</i>)Br and Tol<sub>2</sub>. The strong σ-donor influence of Tol groups results in subtle differences in oxidative addition mechanisms when compared with related aryl halide oxidative addition to palladium(II) centres. For R=Me and L-Br=2,6-(pzCH<sub>2</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Br, a stable Pt<sup>IV</sup> product, <i>fac</i>-Pt<sup>IV</sup>Me<sub>2</sub>{2,6-(pzCH<sub>2</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>-<i>N,C,N</i>)Br is predicted, as reported experimentally, acting as a model for undetected and unstable Pt<sup>IV</sup>Tol<sub>2</sub>{L-<i>N,C,N</i>}Br undergoing facile Tol<sub>2</sub> reductive elimination. The mechanisms reported herein enable the synthesis of Pt<sup>II</sup> pincer reagents with applications in materials and bio-organometallic chemistry.</p>