Recommendation systems have been extensively studied over the last decade in various domains. It has been considered a powerful tool for assisting business owners in promoting sales and helping users with decision-making when given numerous choices. In this paper, we propose a novel Graph-based Context-Aware Recommendation Systems with Knowledge Graph to analyse and predict users’ behaviours, i.e., making recommendations based on historical events and their implicit associations. The model incorporates contextual information extracted from both users’ historical behaviours and events relations, where the contexts have been modelled as knowledge graphs. By leveraging the advantages offered from the knowledge graph, events dependencies and their subtle relations can be established and have been introduced in the recommendation process. Experimental results indicate that the proposed approach can outperform the state-of-the-art algorithms and achieve more accurate recommendations.
History
Publication title
Journal of Systems Science and Systems Engineering
Volume
30
Issue
4
Pagination
482-494
ISSN
1861-9576
Department/School
School of Information and Communication Technology