This study investigated the thermal effects of thermal stress and Joule-Thomson cooling on CO2 migration in a deep saline aquifer through a hydro-thermal-mechanical model. Firstly, the temperature variation of injected CO2 was analyzed through the coupling of two-phase flow, deformation of porous medium and heat transfer with Joule-Thomson effect. Then, the effect of capillary entry pressure on CO2 plume was numerically investigated and compared. It is found that injection temperature and Joule-Thomson effect can significantly affect the distributions of CO2 mass and temperature, particularly in the upper zone near the injection well. The reduction of capillary entry pressure accelerates the upward migration of CO2 plume and increases the CO2 lateral migration distance.
History
Publication title
Thermal Science
Volume
23
Issue
S3
Pagination
917-925
ISSN
0354-9836
Department/School
School of Engineering
Publisher
Yugoslav Society of Heat Transfer Engineers
Place of publication
Serbia
Rights statement
Copyright 2019 Society of Thermal Engineers of Serbia. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/