University of Tasmania
Browse
- No file added yet -

DNA capture reveals transoceanic gene flow in endangered river sharks

Download (928.35 kB)
journal contribution
posted on 2023-05-19, 07:26 authored by Li, G, Corrigan, S, Yang, L, Straube, N, Harris, M, Hofreiter, M, White, WT, Naylor, GJP
For over a hundred years, the “river sharks” of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.

History

Publication title

Proceedings of the National Academy of Sciences of the United States of America

Volume

112

Issue

43

Pagination

13302-13307

ISSN

0027-8424

Department/School

Institute for Marine and Antarctic Studies

Publisher

Natl Acad Sciences

Place of publication

2101 Constitution Ave Nw, Washington, USA, Dc, 20418

Rights statement

Copyright 2015 PNAS

Repository Status

  • Open

Socio-economic Objectives

Fresh, ground and surface water biodiversity

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC