University Of Tasmania

File(s) under permanent embargo

Declining root water transport drives stomatal closure in olive under moderate water stress

journal contribution
posted on 2023-05-21, 11:16 authored by Celia Rodriguez Dominguez, Timothy BrodribbTimothy Brodribb
  • Efficient water transport from soil to leaves sustains stomatal opening and steady-state photosynthesis. The aboveground portion of this pathway is well-described, yet the roots and their connection with the soil are still poorly understood due to technical limitations.
  • Here we used a novel rehydration technique to investigate changes in the hydraulic pathway between roots and soil and within the plant body as individual olive plants were subjected to a range of water stresses.
  • Whole root hydraulic resistance (including the radial pathway from xylem to the soil-root interface) constituted 81% of the whole-plant resistance in unstressed plants, increasing to >95% under a moderate level of water stress. The decline in this whole root hydraulic conductance occurred in parallel with stomatal closure and contributed significantly to the reduction in canopy conductance according to a hydraulic model.
  • Our results demonstrate that losses in root hydraulic conductance, mainly due to a disconnection from the soil during moderate water stress in olive plants, are profound and sufficient to induce stomatal closure before cavitation occurs. Future studies will determine whether this core regulatory role of root hydraulics exists more generally among diverse plant species.


Publication title

New Phytologist








School of Natural Sciences


Wiley-Blackwell Publishing Ltd.

Place of publication

United Kingdom

Rights statement

© 2019 The Authors.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences