University of Tasmania
Browse

File(s) not publicly available

Developmental expression of EphA4-tyrosine kinase receptor in the mouse brain and spinal cord

journal contribution
posted on 2023-05-17, 06:15 authored by Greferath, U, Alison CantyAlison Canty, Messenger, J, Murphy, M
Eph receptor tyrosine kinases and their ephrin ligands are involved in some of the most important steps during the development of the central nervous system, including cell migration, axon guidance, topographic mapping and synapse formation. Moreover, in the adult, they have been implicated in plasticity and regulation of neural stem cell function. One member of the Eph family, EphA4, can bind to both classes of ephrins and may have multiple functions in nervous system development. In order to look for potential sites of EphA4 action during central nervous system development, we conducted a spatio-temporal analysis of EphA4 protein expression. We used immunohistochemistry in preference to in situ hybridization because of the high likelihood that EphA4 protein is expressed on axon tracts, long distances from EphA4 mRNA. In the telencephalon, EphA4 was expressed in the developing cortex from embryonic day 11 (E11) and, later, on major cortical tracts including the corpus callosum and cortico-spinal tract. Robust EphA4 expression was also found in the hippocampus and fornix, and cells and tracts in the striatum. In the diencephalon, the thalamus, the hypothalamus and thalamo-cortical projection were strongly positive. In the mesencephalon, a number of different nuclei were weakly positive, most prominently the red nucleus. In the rhombencephalon, many nuclei were strongly positive including the cerebellum and one of its afferent paths, the inferior cerebellar peduncle, as well as the olivary region. In the spinal cord, there was a dynamic pattern of expression through development, with persistent expression in the dorsal funiculus and ventral grey matter.

History

Publication title

Mechanisms of Development

Volume

119

Issue

Supplement 1

Pagination

S231-238

ISSN

0925-4773

Department/School

Tasmanian School of Medicine

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC