Digestive performance and selective digesta retention in the long-nosed bandicoot, Perameles nasuta, a small omnivorous marsupial
journal contribution
posted on 2023-05-16, 09:52authored byMoyle, DI, Hume, ID, Hill, DM
Bandicoots are opportunistic omnivores that feed on invertebrates, fungi and both epigeal and hypogeal plant parts. We examined the performance of the digestive tract of the long-nosed bandicoot (Perameles nasuta) in terms of intake and total digestibility, patterns of excretion of inert digesta markers, and likely sites of digesta retention, on two diets designed to mimic part of their natural plant and insect diets. On the insect diet (mealworm larvae), bandicoots virtually maintained body mass at a digestible energy intake of 511 kJ . kg(-0.75) . day(-1) and were in strongly positive nitrogen balance. In contrast, on the plant diet (shredded sweet potato), bandicoots ate only one-third as much digestible energy, lost 7% body mass, and were in negative nitrogen balance. Mean retention times of two particle markers on the plant diet (27.5 and 27.0 h) were more than double those on the insect diet (12.4 and 11.2 h), and on both diets the mean retention time of the fluid digesta marker was greater than those of the particle markers, indicating consistent selective retention of fluid digesta in the gut. It was seen radiographically than in mealworm-fed bandicoots major sites of digesta retention were the distal colon and rectum, whereas in the sweet potato-fed animals the caecum and proximal colon were principal sites. It was concluded that retention of plant material in the caecum and proximal colon (the main sites of microbial digestion) and the preferential retention of fluid digesta (together with bacteria and small feed particles) in the caecum were important factors in the ability of bandicoots to switch between insect and plant foods, depending on relative availabilities, and thus to exploit nutritionally unpredictable environments.
History
Publication title
Journal of Comparative Physiology. B: Biochemical, Systemic, and Environmental Physiology