Dispersal connectivity and reserve selection for marine conservation
journal contribution
posted on 2023-05-24, 04:09authored byKininmonth, S, Beger, M, Bode, M, Peterson, E, Vanessa AdamsVanessa Adams, Dorfman, D, Brumbaugh, DR, Possingham, HP
Although larval dispersal is crucial for the persistence of most marine populations, dispersal connectivity between sites is rarely considered in designing marine protected area networks. In particular the role of structural characteristics (known as topology) for the network of larval dispersal routes in the conservation of metapopulations has not been addressed. To determine reserve site configurations that provide highest persistence values with respect to their connectivity characteristics, we model nine connectivity topological models derived from graph theory in a demographic metapopulation model. We identify reserve site configurations that provide the highest persistence values for each of the metapopulation connectivity models. Except for the minimally connected and fully connected populations, we observed two general ‘rules of thumb’ for optimising the mean life time for all topological models: firstly place the majority of reserves, so that they are neighbours of each other, on the sites where the number of connections between the populations is highest (hub), secondly when the reserves have occupied the majority of the vertices in the hub, then select another area of high connectivity and repeat. If there are no suitable hubs remaining then distribute the remaining reserves to isolated locations optimising contact with non-reserved sites.
History
Publication title
Ecological Modelling
Volume
222
Issue
7
Pagination
1272-1282
ISSN
0304-3800
Department/School
School of Geography, Planning and Spatial Sciences
Publisher
Elsevier Science Bv
Place of publication
Po Box 211, Amsterdam, Netherlands, 1000 Ae
Rights statement
Copyright 2011 Elsevier B.V.
Repository Status
Restricted
Socio-economic Objectives
Assessment and management of terrestrial ecosystems