University of Tasmania
Browse

File(s) under permanent embargo

Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close?

journal contribution
posted on 2023-05-19, 05:16 authored by Erin McAdam, Timothy BrodribbTimothy Brodribb, McAdam, SAM
Reactive oxygen species (ROS) are widely recognized as important regulators of stomatal aperture and plant gas exchange. The pathways through which stomata perceive ROS share many common linkages with the well characterized signalling pathway for the hormone abscisic acid (ABA), a major driver of stomatal closure. Given reports that ABA receptor mutants have no stomatal response to ozone-triggered ROS production, as well as evidence that all steps in the ABA biosynthetic pathway can be non-enzymatically converted by ROS, here we investigated the possibility that ozone closes stomata by directly converting ABA precursors to ABA. In plants where stomata were responsive to ozone, we found that foliar ABA levels rapidly increased upon exposure to ozone. Recovery of gas exchange post-exposure occurred only when ABA levels declined. Our data suggest that stomatal closure in response to ozone exposure occurs as a result of direct oxidation of ABA precursors leading to ABA production, but the importance of this ROS interaction remains uncertain under normal photosynthetic conditions.

Funding

Australian Research Council

History

Publication title

Plant, Cell and Environment

Volume

40

Issue

5

Pagination

741-747

ISSN

0140-7791

Department/School

School of Natural Sciences

Publisher

Blackwell Publishing Ltd

Place of publication

9600 Garsington Rd, Oxford, England, Oxon, Ox4 2Dg

Rights statement

© 2017 JohnWiley & Sons

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC