University of Tasmania
Browse

File(s) under permanent embargo

Dynamic computer simulations of electrophoresis: Three decades of active research

journal contribution
posted on 2023-05-17, 00:22 authored by Thormann, W, Caslavska, J, Michael BreadmoreMichael Breadmore, Mosher, RA
Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.

Funding

Australian Research Council

History

Publication title

Electrophoresis

Volume

30

Issue

Supplement 1

Pagination

S16-S26

ISSN

0173-0835

Department/School

School of Natural Sciences

Publisher

Wiley-V C H Verlag Gmbh

Place of publication

Po Box 10 11 61, Weinheim, Germany, D-69451

Rights statement

The definitive published version is available online at: http://interscience.wiley.com

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC